首页 » 文章 » 文章详细信息
Shock and Vibration Volume 2019 ,2019-07-24
Research on Pipeline Damage Imaging Technology Based on Ultrasonic Guided Waves
Research Article
Jian He 1 Chen Zhou 1 Liang Yang 1 Xiaodan Sun 1
Show affiliations
DOI:10.1155/2019/1470761
Received 2019-02-22, accepted for publication 2019-06-19, Published 2019-06-19
PDF
摘要

Pipeline structures are important structural components that cannot be replaced in actual engineering applications. Damage to a pipeline structure will create substantial safety hazards and economic losses in a project. Therefore, it is extremely important to study damaged pipeline structures. In this paper, L(0,2) mode guided waves are used to identify, locate, and image single and double defects in straight pipe structures. For the case where there is a single defect in the straight pipe section, the influence of different excitation frequencies on the reflection coefficient of L(0,2) modal guided wave is studied, and the optimal excitation frequency of L(0,2) guided wave is 70 kHz when single damage is determined. For the case of double defects in the straight pipe section, the double-defect size, the distance between the defects, and the relative defect positions are studied, and the influence of the defect recognition effect is analyzed. The propagation path of the ultrasonic guided wave in the double-defect pipe section is analyzed. Finally, the effectiveness of the three-point axial positioning method and damage imaging method is verified by the single-defect tube segment ultrasonic guided wave flaw detection experiment.

授权许可

Copyright © 2019 Jian He et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xiaodan Sun.College of Aerospace and Civil Engineering, Harbin Engineering University, Harbin 15001, China, hrbeu.edu.cn.sunxiaodan@hrbeu.edu.cn

推荐引用方式

Jian He,Chen Zhou,Liang Yang,Xiaodan Sun. Research on Pipeline Damage Imaging Technology Based on Ultrasonic Guided Waves. Shock and Vibration ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] W. Zhou, M. Ichchou. (2010). Wave propagation in mechanical waveguide with curved members using wave finite element solution. Computer Method in Applied Mechanic and Engineering.199(33–36):2099-2109. DOI: 10.2118/17004-pa.
[2] R. N. Tuttle. (1987). Corrosion in oil and gas production. Journal of Petroleum Technology.39(7):756-762. DOI: 10.2118/17004-pa.
[3] K. G. Boving. (1995). NDE methods used in optimum maintenance programs for oil and gas-pipelines. Insight.37(6):444-446. DOI: 10.2118/17004-pa.
[4] R. M. Davies. (1948). A critical study of the Hopkinson pressure bar. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.240(821):375-457. DOI: 10.2118/17004-pa.
[5] J. Mu, J. L. Rose. (2008). Guided wave propagation and mode differentiation in hollow cylinders with viscoelastic coatings. Journal of the Acoustical Society of America.124(2):866-874. DOI: 10.2118/17004-pa.
[6] F. Deng, B. Wu, C. F. He. (2008). A time-reversal defect identifying method for guided wave inspection in pipes. Journal of Pressure Vessel Technology.130(2). DOI: 10.2118/17004-pa.
[7] D. C. Gazis. (1959). Three-dimensional investigation of the propagation of waves in hollow circular cylinders. I. Analytical foundation. Journal of the Acoustical Society of America.31(5):568-573. DOI: 10.2118/17004-pa.
[8] M. F. Zhang, C. Lu, G. Z. Chen, P. Men. et al.(2011). Modeling three-dimensional ultrasonic guided wave propagation and scattering in circular cylindrical structures using finite element approach. Physics Procedia.22:112-118. DOI: 10.2118/17004-pa.
[9] B. Verma, T. K. Mishra, K. Balasubramaniam. (2014). Interaction of low-frequency axisymmetric ultrasonic guided waves with bends in pipes of arbitrary bend angle and general bend radius. Ultrasonics.54(3):801-808. DOI: 10.2118/17004-pa.
[10] J. L. Rose. (1999). Ultrasonic Waves in Solid Media. DOI: 10.2118/17004-pa.
[11] Y. Da, G. Dong, B. Wang, D. Liu. et al.(2018). A novel approach to surface defect detection. International Journal of Engineering Science.133:181-195. DOI: 10.2118/17004-pa.
[12] M. G. Silk, K. F. Bainton. (1979). The propagation in metal tubing of ultrasonic wave modes equivalent to Lamb waves. Ultrasonics.17(1):11-19. DOI: 10.2118/17004-pa.
[13] J. L. Rose, J. J. Ditri, A. Pilarski, K. Rajana. et al.(1994). A guided wave inspection technique for nuclear steam generator tubing. NDT & E International.27(6):307-310. DOI: 10.2118/17004-pa.
[14] H. Nishino, K. Yoshida, H. Cho, M. Takemoto. et al.(2006). Propagation phenomena of wideband guided waves in a bended pipe. Ultrasonics.44:e1139-e1143. DOI: 10.2118/17004-pa.
[15] A. Love. (1994). A Treatise on the Mathematical Theory of Elasticity. DOI: 10.2118/17004-pa.
[16] R. Carandente, J. Ma, P. Cawley. (2010). The scattering of the fundamental torsional mode from axi-symmetric defects with varying depth profile in pipes. Journal of the Acoustical Society of America.127(6):3440-3448. DOI: 10.2118/17004-pa.
[17] P. Belanger, P. Cawley, F. Simonetti. (2010). Guided wave diffraction tomography within the born approximation. IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.57(6):1405-1418. DOI: 10.2118/17004-pa.
[18] K. R. Leonard, M. K. Hinders. (2003). Guided wave helical ultrasonic tomography of pipes. Journal of the Acoustical Society of America.114(2):767-774. DOI: 10.2118/17004-pa.
[19] M. El Mountassir, G. Mourot, S. Yaacoubi, D. Maquin. et al.(2018). Damage detection and localization in pipeline using sparse estimation of ultrasonic guided waves signals. IFAC-PapersOnLine.51(24):941-948. DOI: 10.2118/17004-pa.
[20] J. He, L. Yang, X. D. Sun, M. P. Hu. et al.(2018). Damage identification in welded structures using symmetric excitation of Lamb waves. Advances in Mechanical Engineering.10(9). DOI: 10.2118/17004-pa.
文献评价指标
浏览 9次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次