首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-07-25
An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future
Review Article
Muhammad Babar Khawar 1 , 2 , 3 Muddasir Hassan Abbasi 3 , 4 Zerwa Siddique 5 Amin Arif 3 Nadeem Sheikh 3
Show affiliations
DOI:10.1155/2019/9702562
Received 2019-03-18, accepted for publication 2019-07-04, Published 2019-07-04
PDF
摘要

Extracellular vesicles (EVs) are a heterogeneous group of membrane-bounded vesicles that are believed to be produced and secreted by presumably all cell types under physiological and pathological conditions, including tumors. EVs are very important vehicles in intercellular communications for both shorter and longer distances and are able to deliver a wide range of cargos including proteins, lipids, and various species of nucleic acids effectively. EVs have been emerging as a novel biotherapeutic platform to efficiently deliver therapeutic cargos to treat a broad range of diseases including cancer. This vast potential of drug delivery lies in their abilities to carry a variety of cargos and their ease in crossing the biological membranes. Similarly, their presence in a variety of body fluids makes them a potential biomarker for early diagnosis, prognostication, and surveillance of cancer. Here, we discuss the relatively least and understudied aspects of EV biology and tried to highlight the obstacles and limitations in their clinical applications and also described most of the new warfronts to beat cancer at multiple stages. However, much more challenges still remain to evaluate EV-based therapeutics, and we are very much hopeful that the current work prompts further discovery.

授权许可

Copyright © 2019 Muhammad Babar Khawar et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Muddasir Hassan Abbasi.Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan, pu.edu.pk;Department of Zoology, University of Okara, Okara, Pakistan, uo.edu.pk.muddygcs@gmail.com
2. Nadeem Sheikh.Cell & Molecular Biology Lab, Department of Zoology, University of the Punjab, Lahore, Pakistan, pu.edu.pk.s_nadeem77@yahoo.com

推荐引用方式

Muhammad Babar Khawar,Muddasir Hassan Abbasi,Zerwa Siddique,Amin Arif,Nadeem Sheikh. An Update on Novel Therapeutic Warfronts of Extracellular Vesicles (EVs) in Cancer Treatment: Where We Are Standing Right Now and Where to Go in the Future. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] J. K. Yang, J. Song, H. R. Huo, Y. L. Zhao. et al.(2017). DNM3, p65 and p53 from exosomes represent potential clinical diagnosis markers for glioblastoma multiforme. Therapeutic Advances in Medical Oncology.9(12):741-754. DOI: 10.1111/j.1582-4934.2010.01008.x.
[2] X. Ma, W. Guo, S. Yang, X. Zhu. et al.(2015). Serum GRP78 as a tumor marker and its prognostic significance in non-small cell lung cancers: a retrospective study. Disease Markers.2015-6. DOI: 10.1111/j.1582-4934.2010.01008.x.
[3] H. Xu, H. Zong, C. Ma, X. Ming. et al.(2017). Epidermal growth factor receptor in glioblastoma. Oncology Letters.14(1):512-516. DOI: 10.1111/j.1582-4934.2010.01008.x.
[4] L. Barile, G. Vassalli. (2017). Exosomes: therapy delivery tools and biomarkers of diseases. Pharmacology & Therapeutics.174:63-78. DOI: 10.1111/j.1582-4934.2010.01008.x.
[5] H. Maeda. (2012). Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. Journal of Controlled Release.164(2):138-144. DOI: 10.1111/j.1582-4934.2010.01008.x.
[6] C. Thery, M. Boussac, P. Veron, P. Ricciardi-Castagnoli. et al.(2001). Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. The Journal of Immunology.166(12):7309-7318. DOI: 10.1111/j.1582-4934.2010.01008.x.
[7] G. Camussi, M. C. Deregibus, S. Bruno, C. Grange. et al.(2011). Exosome/microvesicle-mediated epigenetic reprogramming of cells. American Journal of Cancer Research.1(1):98-110. DOI: 10.1111/j.1582-4934.2010.01008.x.
[8] A. M. Marleau, C. S. Chen, J. A. Joyce, R. H. Tullis. et al.(2012). Exosome removal as a therapeutic adjuvant in cancer. Journal of Translational Medicine.10(1):134. DOI: 10.1111/j.1582-4934.2010.01008.x.
[9] S. Phuyal, N. P. Hessvik, T. Skotland, K. Sandvig. et al.(2014). Regulation of exosome release by glycosphingolipids and flotillins. The FEBS Journal.281(9):2214-2227. DOI: 10.1111/j.1582-4934.2010.01008.x.
[10] K. Yuyama, H. Sun, S. Mitsutake, Y. Igarashi. et al.(2012). Sphingolipid-modulated exosome secretion promotes clearance of amyloid- by microglia. Journal of Biological Chemistry.287(14):10977-10989. DOI: 10.1111/j.1582-4934.2010.01008.x.
[11] C. Eichelser, I. Stuckrath, V. Muller, K. Milde-Langosch. et al.(2014). Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget.5(20):9650-9663. DOI: 10.1111/j.1582-4934.2010.01008.x.
[12] S. Khan, H. F. Bennit, D. Turay, M. Perez. et al.(2014). Early diagnostic value of survivin and its alternative splice variants in breast cancer. BMC Cancer.14(1):176. DOI: 10.1111/j.1582-4934.2010.01008.x.
[13] S. Khan, J. R. Aspe, M. G. Asumen, F. Almaguel. et al.(2009). Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential. British Journal of Cancer.100(7):1073-1086. DOI: 10.1111/j.1582-4934.2010.01008.x.
[14] M. Xue, W. Chen, A. Xiang, R. Wang. et al.(2017). Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1. Molecular Cancer.16(1):143. DOI: 10.1111/j.1582-4934.2010.01008.x.
[15] I. Vardaki, S. Ceder, D. Rutishauser, G. Baltatzis. et al.(2016). Periostin is identified as a putative metastatic marker in breast cancer-derived exosomes. Oncotarget.7(46):74966-74978. DOI: 10.1111/j.1582-4934.2010.01008.x.
[16] T. Wang, K. Ning, T. Lu, X. Sun. et al.(2017). Increasing circulating exosomes-carrying TRPC5 predicts chemoresistance in metastatic breast cancer patients. Cancer Science.108(3):448-454. DOI: 10.1111/j.1582-4934.2010.01008.x.
[17] M. F. Bolukbasi, A. Mizrak, G. B. Ozdener, S. Madlener. et al.(2012). miR-1289 and “zipcode”-like sequence enrich mRNAs in microvesicles. Molecular Therapy - Nucleic Acids.1:e10. DOI: 10.1111/j.1582-4934.2010.01008.x.
[18] C. J. Beckham, J. Olsen, P. N. Yin, C. H. Wu. et al.(2014). Bladder cancer exosomes contain EDIL-3/Del1 and facilitate cancer progression. The Journal of Urology.192(2):583-592. DOI: 10.1111/j.1582-4934.2010.01008.x.
[19] V. Gujrati, S. Kim, S. H. Kim, J. J. Min. et al.(2014). Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano.8(2):1525-1537. DOI: 10.1111/j.1582-4934.2010.01008.x.
[20] Y. Tian, S. Li, J. Song, T. Ji. et al.(2014). A doxorubicin delivery platform using engineered natural membrane vesicle exosomes for targeted tumor therapy. Biomaterials.35(7):2383-2390. DOI: 10.1111/j.1582-4934.2010.01008.x.
[21] N. Nishida-Aoki, N. Tominaga, F. Takeshita, H. Sonoda. et al.(2017). Disruption of circulating extracellular vesicles as a novel therapeutic strategy against cancer metastasis. Molecular Therapy.25(1):181-191. DOI: 10.1111/j.1582-4934.2010.01008.x.
[22] K. J. McKelvey, K. L. Powell, A. W. Ashton, J. M. Morris. et al.(2015). Exosomes: mechanisms of uptake. Journal of Circulating Biomarkers.4:7. DOI: 10.1111/j.1582-4934.2010.01008.x.
[23] V. Ciravolo, V. Huber, G. C. Ghedini, E. Venturelli. et al.(2012). Potential role of HER2-overexpressing exosomes in countering trastuzumab-based therapy. Journal of Cellular Physiology.227(2):658-667. DOI: 10.1111/j.1582-4934.2010.01008.x.
[24] L. Gerratana, B. Toffoletto, M. Bulfoni, D. Cesselli. et al.(2015). A37Metastatic breast cancer and circulating exosomes. Hints from an exploratory analysis. Annals of Oncology.26:vi14.3-vivi14. DOI: 10.1111/j.1582-4934.2010.01008.x.
[25] L. A. Mulcahy, R. C. Pink, D. R. F. Carter. (2014). Routes and mechanisms of extracellular vesicle uptake. Journal of Extracellular Vesicles.3(1):24641. DOI: 10.1111/j.1582-4934.2010.01008.x.
[26] B. C. Melnik, G. Schmitz. (2019). Exosomes of pasteurized milk: potential pathogens of Western diseases. Journal of Translational Medicine.17(1):3. DOI: 10.1111/j.1582-4934.2010.01008.x.
[27] R. E. Lane, D. Korbie, M. M. Hill, M. Trau. et al.(2018). Extracellular vesicles as circulating cancer biomarkers: opportunities and challenges. Clinical and Translational Medicine.7(1):14. DOI: 10.1111/j.1582-4934.2010.01008.x.
[28] D. J. Schneider, J. M. Speth, L. R. Penke, S. H. Wettlaufer. et al.(2017). Mechanisms and modulation of microvesicle uptake in a model of alveolar cell communication. Journal of Biological Chemistry.292(51):20897-20910. DOI: 10.1111/j.1582-4934.2010.01008.x.
[29] J. L. Munoz, S. A. Bliss, S. J. Greco, S. H. Ramkissoon. et al.(2013). Delivery of functional anti-miR-9 by mesenchymal stem cell-derived exosomes to glioblastoma multiforme cells conferred chemosensitivity. Molecular Therapy - Nucleic Acids.2:e126. DOI: 10.1111/j.1582-4934.2010.01008.x.
[30] T. Yang, P. Martin, B. Fogarty, A. Brown. et al.(2015). Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in. Pharmaceutical Research.32(6):2003-2014. DOI: 10.1111/j.1582-4934.2010.01008.x.
[31] K. C. French, M. A. Antonyak, R. A. Cerione. (2017). Extracellular vesicle docking at the cellular port: extracellular vesicle binding and uptake. Seminars in Cell & Developmental Biology.67:48-55. DOI: 10.1111/j.1582-4934.2010.01008.x.
[32] M. J. Haney, N. L. Klyachko, Y. Zhao, R. Gupta. et al.(2015). Exosomes as drug delivery vehicles for Parkinson’s disease therapy. Journal of Controlled Release.207:18-30. DOI: 10.1111/j.1582-4934.2010.01008.x.
[33] H. Costa Verdera, J. J. Gitz-Francois, R. M. Schiffelers, P. Vader. et al.(2017). Cellular uptake of extracellular vesicles is mediated by clathrin-independent endocytosis and macropinocytosis. Journal of Controlled Release.266:100-108. DOI: 10.1111/j.1582-4934.2010.01008.x.
[34] Y. Wei, X. Lai, S. Yu, S. Chen. et al.(2014). Exosomal miR-221/222 enhances tamoxifen resistance in recipient ER-positive breast cancer cells. Breast Cancer Research and Treatment.147(2):423-431. DOI: 10.1111/j.1582-4934.2010.01008.x.
[35] K. Shiozawa, J. Shuting, Y. Yoshioka, T. Ochiya. et al.(2018). Extracellular vesicle-encapsulated microRNA-761 enhances pazopanib resistance in synovial sarcoma. Biochemical and Biophysical Research Communications.495(1):1322-1327. DOI: 10.1111/j.1582-4934.2010.01008.x.
[36] S. Zhang, Y. Zhang, J. Qu, X. Che. et al.(2018). Exosomes promote cetuximab resistance via the PTEN/Akt pathway in colon cancer cells. Brazilian Journal of Medical and Biological Research.51(1). DOI: 10.1111/j.1582-4934.2010.01008.x.
[37] X. C. Jiang, J. Q. Gao. (2017). Exosomes as novel bio-carriers for gene and drug delivery. International Journal of Pharmaceutics.521(1-2):167-175. DOI: 10.1111/j.1582-4934.2010.01008.x.
[38] C. J. D. Osterman, J. C. Lynch, P. Leaf, A. Gonda. et al.(2015). Curcumin modulates pancreatic adenocarcinoma cell-derived exosomal function. PloS One.10(7, article e0132845). DOI: 10.1111/j.1582-4934.2010.01008.x.
[39] X. Zhuang, X. Xiang, W. Grizzle, D. Sun. et al.(2011). Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Molecular Therapy.19(10):1769-1779. DOI: 10.1111/j.1582-4934.2010.01008.x.
[40] A. E. Sedgwick, C. D'Souza-Schorey. (2018). The biology of extracellular microvesicles. Traffic.19(5):319-327. DOI: 10.1111/j.1582-4934.2010.01008.x.
[41] H. C. Christianson, K. J. Svensson, T. H. van Kuppevelt, J. P. Li. et al.(2013). Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proceedings of the National Academy of Sciences of the United States of America.110(43):17380-17385. DOI: 10.1111/j.1582-4934.2010.01008.x.
[42] K. J. Svensson, H. C. Christianson, A. Wittrup, E. Bourseau-Guilmain. et al.(2013). Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid raft-mediated endocytosis negatively regulated by caveolin-1. Journal of Biological Chemistry.288(24):17713-17724. DOI: 10.1111/j.1582-4934.2010.01008.x.
[43] I. Del Conde, C. N. Shrimpton, P. Thiagarajan, J. A. Lopez. et al.(2005). Tissue-factor-bearing microvesicles arise from lipid rafts and fuse with activated platelets to initiate coagulation. Blood.106(5):1604-1611. DOI: 10.1111/j.1582-4934.2010.01008.x.
[44] J. E. Fox, C. D. Austin, J. K. Boyles, P. K. Steffen. et al.(1990). Role of the membrane skeleton in preventing the shedding of procoagulant-rich microvesicles from the platelet plasma membrane. The Journal of Cell Biology.111(2):483-493. DOI: 10.1111/j.1582-4934.2010.01008.x.
[45] R. F. Zwaal, E. M. Bevers. (1983). Platelet phospholipid asymmetry and its significance in hemostasis. Subcellular Biochemistry.9:299-334. DOI: 10.1111/j.1582-4934.2010.01008.x.
[46] D. W. Dekkers, P. Comfurius, W. M. Vuist, J. T. Billheimer. et al.(1998). Impaired Ca-induced tyrosine phosphorylation and defective lipid scrambling in erythrocytes from a patient with Scott syndrome: a study using an inhibitor for scramblase that mimics the defect in Scott syndrome. Blood.91(6):2133-2138. DOI: 10.1111/j.1582-4934.2010.01008.x.
[47] M. Fareh, F. Almairac, L. Turchi, F. Burel-Vandenbos. et al.(2017). Cell-based therapy using miR-302-367 expressing cells represses glioblastoma growth. Cell Death & Disease.8(3, article e2713). DOI: 10.1111/j.1582-4934.2010.01008.x.
[48] L. Alvarez-Erviti, Y. Seow, H. F. Yin, C. Betts. et al.(2011). Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nature Biotechnology.29(4):341-345. DOI: 10.1111/j.1582-4934.2010.01008.x.
[49] Z. Lu, B. Zuo, R. Jing, X. Gao. et al.(2017). Dendritic cell-derived exosomes elicit tumor regression in autochthonous hepatocellular carcinoma mouse models. Journal of Hepatology.67(4):739-748. DOI: 10.1111/j.1582-4934.2010.01008.x.
[50] A. Piccin, W. G. Murphy, O. P. Smith. (2007). Circulating microparticles: pathophysiology and clinical implications. Blood Reviews.21(3):157-171. DOI: 10.1111/j.1582-4934.2010.01008.x.
[51] Z. Beleznay, A. Zachowski, P. F. Devaux, M. P. Navazo. et al.(1993). ATP-dependent aminophospholipid translocation in erythrocyte vesicles: stoichiometry of transport. Biochemistry.32(12):3146-3152. DOI: 10.1111/j.1582-4934.2010.01008.x.
[52] V. Muralidharan-Chari, J. Clancy, C. Plou, M. Romao. et al.(2009). ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Current Biology.19(22):1875-1885. DOI: 10.1111/j.1582-4934.2010.01008.x.
[53] M. S. Kim, M. J. Haney, Y. Zhao, V. Mahajan. et al.(2016). Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomedicine: Nanotechnology, Biology and Medicine.12(3):655-664. DOI: 10.1111/j.1582-4934.2010.01008.x.
[54] M. Hadla, S. Palazzolo, G. Corona, I. Caligiuri. et al.(2016). Exosomes increase the therapeutic index of doxorubicin in breast and ovarian cancer mouse models. Nanomedicine.11(18):2431-2441. DOI: 10.1111/j.1582-4934.2010.01008.x.
[55] M. Julsgaard, L. A. Christensen, P. R. Gibson, R. B. Gearry. et al.(2016). Concentrations of adalimumab and infliximab in mothers and newborns, and effects on infection. Gastroenterology.151(1):110-119. DOI: 10.1111/j.1582-4934.2010.01008.x.
[56] M. Karin. (2009). NF-B as a critical link between inflammation and cancer. Cold Spring Harbor Perspectives in Biology.1(5, article a000141). DOI: 10.1111/j.1582-4934.2010.01008.x.
[57] I. Parolini, C. Federici, C. Raggi, L. Lugini. et al.(2009). Microenvironmental pH is a key factor for exosome traffic in tumor cells. Journal of Biological Chemistry.284(49):34211-34222. DOI: 10.1111/j.1582-4934.2010.01008.x.
[58] E. Cocucci, J. Meldolesi. (2015). Ectosomes and exosomes: shedding the confusion between extracellular vesicles. Trends in Cell Biology.25(6):364-372. DOI: 10.1111/j.1582-4934.2010.01008.x.
[59] M. Yáñez-Mó, P. R. M. Siljander, Z. Andreu, A. Bedina Zavec. et al.(2015). Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles.4(1):27066. DOI: 10.1111/j.1582-4934.2010.01008.x.
[60] R. Xu, D. W. Greening, H. J. Zhu, N. Takahashi. et al.(2016). Extracellular vesicle isolation and characterization: toward clinical application. The Journal of Clinical Investigation.126(4):1152-1162. DOI: 10.1111/j.1582-4934.2010.01008.x.
[61] E. Cocucci, G. Racchetti, J. Meldolesi. (2009). Shedding microvesicles: artefacts no more. Trends in Cell Biology.19(2):43-51. DOI: 10.1111/j.1582-4934.2010.01008.x.
[62] K. W. Witwer, E. I. Buzás, L. T. Bemis, A. Bora. et al.(2013). Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. Journal of Extracellular Vesicles.2(1):20360. DOI: 10.1111/j.1582-4934.2010.01008.x.
[63] M. Colombo, G. Raposo, C. Thery. (2014). Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell and Developmental Biology.30(1):255-289. DOI: 10.1111/j.1582-4934.2010.01008.x.
[64] H.-I. Chang, M. K. Yeh. (2012). Clinical development of liposome based drugs: formulation, characterization, and therapeutic efficacy. International Journal of Nanomedicine.7:49-60. DOI: 10.1111/j.1582-4934.2010.01008.x.
[65] B. T. Kreger, A. L. Dougherty, K. S. Greene, R. A. Cerione. et al.(2016). Microvesicle cargo and function changes upon induction of cellular transformation. Journal of Biological Chemistry.291(38):19774-19785. DOI: 10.1111/j.1582-4934.2010.01008.x.
[66] Y. Lee, D. H. Thompson. (2017). Stimuli-responsive liposomes for drug delivery. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology.9(5, article e1450). DOI: 10.1111/j.1582-4934.2010.01008.x.
[67] C. Ciardiello, L. Cavallini, C. Spinelli, J. Yang. et al.(2016). Focus on extracellular vesicles: new frontiers of cell-to-cell communication in cancer. International Journal of Molecular Sciences.17(2):175. DOI: 10.1111/j.1582-4934.2010.01008.x.
[68] R. van der Meel, M. H. A. M. Fens, P. Vader, W. W. van Solinge. et al.(2014). Extracellular vesicles as drug delivery systems: lessons from the liposome field. Journal of Controlled Release.195:72-85. DOI: 10.1111/j.1582-4934.2010.01008.x.
[69] N. Kosaka, Y. Yoshioka, Y. Fujita, T. Ochiya. et al.(2016). Versatile roles of extracellular vesicles in cancer. The Journal of Clinical Investigation.126(4):1163-1172. DOI: 10.1111/j.1582-4934.2010.01008.x.
[70] M. Tkach, J. Kowal, A. E. Zucchetti, L. Enserink. et al.(2017). Qualitative differences in T‐cell activation by dendritic cell‐derived extracellular vesicle subtypes. The EMBO Journal.36(20):3012-3028. DOI: 10.1111/j.1582-4934.2010.01008.x.
[71] E. Alegre, M. F. Sanmamed, C. Rodriguez, O. Carranza. et al.(2014). Study of circulating microRNA-125b levels in serum exosomes in advanced melanoma. Archives of Pathology & Laboratory Medicine.138(6):828-832. DOI: 10.1111/j.1582-4934.2010.01008.x.
[72] B. L. Deatherage, B. T. Cookson. (2012). Membrane vesicle release in bacteria, eukaryotes, and archaea: a conserved yet underappreciated aspect of microbial life. Infection and Immunity.80(6):1948-1957. DOI: 10.1111/j.1582-4934.2010.01008.x.
[73] V. Muralidharan-Chari, J. W. Clancy, A. Sedgwick, C. D'Souza-Schorey. et al.(2010). Microvesicles: mediators of extracellular communication during cancer progression. Journal of Cell Science.123(10):1603-1611. DOI: 10.1111/j.1582-4934.2010.01008.x.
[74] M. Tucci, A. Passarelli, F. Mannavola, L. S. Stucci. et al.(2018). Serum exosomes as predictors of clinical response to ipilimumab in metastatic melanoma. OncoImmunology.7(2, article e1387706). DOI: 10.1111/j.1582-4934.2010.01008.x.
[75] C. D'Souza-Schorey, J. W. Clancy. (2012). Tumor-derived microvesicles: shedding light on novel microenvironment modulators and prospective cancer biomarkers. Genes & Development.26(12):1287-1299. DOI: 10.1111/j.1582-4934.2010.01008.x.
[76] A. K. Bosserhoff, R. Buettner. (2002). Expression, function and clinical relevance of MIA (melanoma inhibitory activity). Histology and Histopathology.17(1):289-300. DOI: 10.1111/j.1582-4934.2010.01008.x.
[77] M. Mittelbrunn, C. Gutiérrez-Vázquez, C. Villarroya-Beltri, S. González. et al.(2011). Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nature Communications.2(1, article 282). DOI: 10.1111/j.1582-4934.2010.01008.x.
[78] O. Fourcade, M. F. Simon, C. Viodé, N. Rugani. et al.(1995). Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell.80(6):919-927. DOI: 10.1111/j.1582-4934.2010.01008.x.
[79] Q. An, A. J. E. van Bel, R. Hückelhoven. (2007). Do plant cells secrete exosomes derived from multivesicular bodies?. Plant Signaling & Behavior.2(1):4-7. DOI: 10.1111/j.1582-4934.2010.01008.x.
[80] N. Kosaka, H. Iguchi, K. Hagiwara, Y. Yoshioka. et al.(2013). Neutral sphingomyelinase 2 (nSMase2)-dependent exosomal transfer of angiogenic microRNAs regulate cancer cell metastasis. Journal of Biological Chemistry.288(15):10849-10859. DOI: 10.1111/j.1582-4934.2010.01008.x.
[81] A. Yokoi, Y. Yoshioka, Y. Yamamoto, M. Ishikawa. et al.(2017). Malignant extracellular vesicles carrying mRNA facilitate peritoneal dissemination in ovarian cancer. Nature Communications.8(1, article 14470). DOI: 10.1111/j.1582-4934.2010.01008.x.
[82] S. el Andaloussi, S. Lakhal, I. Mäger, M. J. A. Wood. et al.(2013). Exosomes for targeted siRNA delivery across biological barriers. Advanced Drug Delivery Reviews.65(3):391-397. DOI: 10.1111/j.1582-4934.2010.01008.x.
[83] N. Kosaka, F. Takeshita, Y. Yoshioka, K. Hagiwara. et al.(2013). Exosomal tumor-suppressive microRNAs as novel cancer therapy: “exocure” is another choice for cancer treatment. Advanced Drug Delivery Reviews.65(3):376-382. DOI: 10.1111/j.1582-4934.2010.01008.x.
[84] S. M. van Dommelen, P. Vader, S. Lakhal, S. A. A. Kooijmans. et al.(2012). Microvesicles and exosomes: opportunities for cell-derived membrane vesicles in drug delivery. Journal of Controlled Release.161(2):635-644. DOI: 10.1111/j.1582-4934.2010.01008.x.
[85] M. Ostrowski, N. B. Carmo, S. Krumeich, I. Fanget. et al.(2010). Rab27a and Rab27b control different steps of the exosome secretion pathway. Nature Cell Biology.12(1):19-30. DOI: 10.1111/j.1582-4934.2010.01008.x.
[86] M. F. Baietti, Z. Zhang, E. Mortier, A. Melchior. et al.(2012). Syndecan–syntenin–ALIX regulates the biogenesis of exosomes. Nature Cell Biology.14(7):677-685. DOI: 10.1111/j.1582-4934.2010.01008.x.
[87] H. Wang, L. Hou, A. Li, Y. Duan. et al.(2014). Expression of serum exosomal microRNA-21 in human hepatocellular carcinoma. BioMed Research International.2014-5. DOI: 10.1111/j.1582-4934.2010.01008.x.
[88] N. A. Atai, L. Balaj, H. van Veen, X. O. Breakefield. et al.(2013). Heparin blocks transfer of extracellular vesicles between donor and recipient cells. Journal of Neuro-Oncology.115(3):343-351. DOI: 10.1111/j.1582-4934.2010.01008.x.
[89] W. Sohn, J. Kim, S. H. Kang, S. R. Yang. et al.(2015). Serum exosomal microRNAs as novel biomarkers for hepatocellular carcinoma. Experimental & Molecular Medicine.47(9, article e184). DOI: 10.1111/j.1582-4934.2010.01008.x.
[90] I. Furi, F. Momen-Heravi, G. Szabo. (2017). Extracellular vesicle isolation: present and future. Annals of Translational Medicine.5(12):263. DOI: 10.1111/j.1582-4934.2010.01008.x.
[91] S. R. Woo, M. B. Fuertes, L. Corrales, S. Spranger. et al.(2014). STING-dependent cytosolic DNA sensing mediates innate immune recognition of immunogenic tumors. Immunity.41(5):830-842. DOI: 10.1111/j.1582-4934.2010.01008.x.
[92] S. Kamerkar, V. S. LeBleu, H. Sugimoto, S. Yang. et al.(2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature.546(7659):498-503. DOI: 10.1111/j.1582-4934.2010.01008.x.
[93] H. Zhang, K. Tang, Y. Zhang, R. Ma. et al.(2015). Cell-free tumor microparticle vaccines stimulate dendritic cells via cGAS/STING signaling. Cancer Immunology Research.3(2):196-205. DOI: 10.1111/j.1582-4934.2010.01008.x.
[94] A. Datta, H. Kim, M. Lal, L. McGee. et al.(2017). Manumycin A suppresses exosome biogenesis and secretion via targeted inhibition of Ras/Raf/ERK1/2 signaling and hnRNP H1 in castration-resistant prostate cancer cells. Cancer Letters.408:73-81. DOI: 10.1111/j.1582-4934.2010.01008.x.
[95] X. Cai, Y. H. Chiu, Z. J. Chen. (2014). The cGAS-cGAMP-STING pathway of cytosolic DNA sensing and signaling. Molecular Cell.54(2):289-296. DOI: 10.1111/j.1582-4934.2010.01008.x.
[96] M. W. Graner. (2018). Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Seminars in Immunopathology.40(5):465-475. DOI: 10.1111/j.1582-4934.2010.01008.x.
[97] O. Demaria, A. de Gassart, S. Coso, N. Gestermann. et al.(2015). STING activation of tumor endothelial cells initiates spontaneous and therapeutic antitumor immunity. Proceedings of the National Academy of Sciences of the United States of America.112(50):15408-15413. DOI: 10.1111/j.1582-4934.2010.01008.x.
[98] L. Deng, H. Liang, M. Xu, X. Yang. et al.(2014). STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity.41(5):843-852. DOI: 10.1111/j.1582-4934.2010.01008.x.
[99] P. Wolf. (1967). The nature and significance of platelet products in human plasma. British Journal of Haematology.13(3):269-288. DOI: 10.1111/j.1582-4934.2010.01008.x.
[100] F. Urabe, N. Kosaka, Y. Yoshioka, S. Egawa. et al.(2017). The small vesicular culprits: the investigation of extracellular vesicles as new targets for cancer treatment. Clinical and Translational Medicine.6(1):45. DOI: 10.1111/j.1582-4934.2010.01008.x.
[101] K. Denzer, M. J. Kleijmeer, H. F. Heijnen, W. Stoorvogel. et al.(2000). Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. Journal of Cell Science.113:3365-3374. DOI: 10.1111/j.1582-4934.2010.01008.x.
[102] A. Bobrie, M. Colombo, S. Krumeich, G. Raposo. et al.(2012). Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. Journal of Extracellular Vesicles.1(1, article 18397). DOI: 10.1111/j.1582-4934.2010.01008.x.
[103] H. L. Sun, R. Cui, J. K. Zhou, K. Y. Teng. et al.(2016). ERK activation globally downregulates miRNAs through phosphorylating exportin-5. Cancer Cell.30(5):723-736. DOI: 10.1111/j.1582-4934.2010.01008.x.
[104] E. Willms, H. J. Johansson, I. Mäger, Y. Lee. et al.(2016). Cells release subpopulations of exosomes with distinct molecular and biological properties. Scientific Reports.6(1, article 22519). DOI: 10.1111/j.1582-4934.2010.01008.x.
[105] M. Logozzi, A. de Milito, L. Lugini, M. Borghi. et al.(2009). High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PloS One.4(4, article e5219). DOI: 10.1111/j.1582-4934.2010.01008.x.
[106] M. B. Huang, R. R. Gonzalez, J. Lillard, V. C. Bond. et al.(2017). Secretion modification region-derived peptide blocks exosome release and mediates cell cycle arrest in breast cancer cells. Oncotarget.8(7):11302-11315. DOI: 10.1111/j.1582-4934.2010.01008.x.
[107] E. Sezgin, H. J. Kaiser, T. Baumgart, P. Schwille. et al.(2012). Elucidating membrane structure and protein behavior using giant plasma membrane vesicles. Nature Protocols.7(6):1042-1051. DOI: 10.1111/j.1582-4934.2010.01008.x.
[108] S. Sarabipour, R. B. Chan, B. Zhou, G. Di Paolo. et al.(2015). Analytical characterization of plasma membrane-derived vesicles produced via osmotic and chemical vesiculation. Biochimica et Biophysica Acta (BBA) - Biomembranes.1848(7):1591-1598. DOI: 10.1111/j.1582-4934.2010.01008.x.
[109] E. G. Trams, C. J. Lauter, J. Norman Salem, U. Heine. et al.(1981). Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochimica et Biophysica Acta (BBA) - Biomembranes.645(1):63-70. DOI: 10.1111/j.1582-4934.2010.01008.x.
[110] F. Chalmin, S. Ladoire, G. Mignot, J. Vincent. et al.(2010). Membrane-associated Hsp72 from tumor-derived exosomes mediates STAT3-dependent immunosuppressive function of mouse and human myeloid-derived suppressor cells. The Journal of Clinical Investigation.120(2):457-471. DOI: 10.1111/j.1582-4934.2010.01008.x.
[111] S. Roger, B. Jelassi, I. Couillin, P. Pelegrin. et al.(2015). Understanding the roles of the P2X7 receptor in solid tumour progression and therapeutic perspectives. Biochimica et Biophysica Acta (BBA) - Biomembranes.1848(10):2584-2602. DOI: 10.1111/j.1582-4934.2010.01008.x.
[112] X. Qu, Y. Tang, S. Hua. (2018). Immunological approaches towards cancer and inflammation: a cross talk. Frontiers in Immunology.9:563. DOI: 10.1111/j.1582-4934.2010.01008.x.
[113] S. Yu, C. Liu, K. Su, J. Wang. et al.(2007). Tumor exosomes inhibit differentiation of bone marrow dendritic cells. The Journal of Immunology.178(11):6867-6875. DOI: 10.1111/j.1582-4934.2010.01008.x.
[114] M. Idzko, D. Ferrari, H. K. Eltzschig. (2014). Nucleotide signalling during inflammation. Nature.509(7500):310-317. DOI: 10.1111/j.1582-4934.2010.01008.x.
[115] F. Baixauli, C. López-Otín, M. Mittelbrunn. (2014). Exosomes and autophagy: coordinated mechanisms for the maintenance of cellular fitness. Frontiers in Immunology.5:403. DOI: 10.1111/j.1582-4934.2010.01008.x.
[116] T. L. Whiteside. (2016). Exosomes and tumor-mediated immune suppression. The Journal of Clinical Investigation.126(4):1216-1223. DOI: 10.1111/j.1582-4934.2010.01008.x.
[117] R. Nair, L. Santos, S. Awasthi, T. von Erlach. et al.(2014). Extracellular vesicles derived from preosteoblasts influence embryonic stem cell differentiation. Stem Cells and Development.23(14):1625-1635. DOI: 10.1111/j.1582-4934.2010.01008.x.
[118] R. M. Johnstone, M. Adam, J. R. Hammond, L. Orr. et al.(1987). Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). The Journal of Biological Chemistry.262(19):9412-9420. DOI: 10.1111/j.1582-4934.2010.01008.x.
[119] N. Del Piccolo, J. Placone, L. He, S. C. Agudelo. et al.(2012). Production of plasma membrane vesicles with chloride salts and their utility as a cell membrane mimetic for biophysical characterization of membrane protein interactions. Analytical Chemistry.84(20):8650-8655. DOI: 10.1111/j.1582-4934.2010.01008.x.
[120] B. Meehan, J. Rak, D. Di Vizio. (2016). Oncosomes – large and small: what are they, where they came from?. Journal of Extracellular Vesicles.5(1, article 33109). DOI: 10.1111/j.1582-4934.2010.01008.x.
[121] S. Manier, C. J. Liu, H. Avet-Loiseau, J. Park. et al.(2017). Prognostic role of circulating exosomal miRNAs in multiple myeloma. Blood.129(17):2429-2436. DOI: 10.1111/j.1582-4934.2010.01008.x.
[122] W. Chen, J. Jiang, W. Xia, J. Huang. et al.(2017). Tumor-related exosomes contribute to tumor-promoting microenvironment: an immunological perspective. Journal of Immunology Research.2017-10. DOI: 10.1111/j.1582-4934.2010.01008.x.
[123] T. L. Whiteside. (2017). Exosomes carrying immunoinhibitory proteins and their role in cancer. Clinical & Experimental Immunology.189(3):259-267. DOI: 10.1111/j.1582-4934.2010.01008.x.
[124] H. F. Heijnen, A. E. Schiel, R. Fijnheer, H. J. Geuze. et al.(1999). Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and alpha-granules. Blood.94(11):3791-3799. DOI: 10.1111/j.1582-4934.2010.01008.x.
[125] X. Teng, L. Chen, W. Chen, J. Yang. et al.(2015). Mesenchymal stem cell-derived exosomes improve the microenvironment of infarcted myocardium contributing to angiogenesis and anti-inflammation. Cellular Physiology and Biochemistry.37(6):2415-2424. DOI: 10.1111/j.1582-4934.2010.01008.x.
[126] D. W. Greening, S. K. Gopal, R. Xu, R. J. Simpson. et al.(2015). Exosomes and their roles in immune regulation and cancer. Seminars in Cell & Developmental Biology.40:72-81. DOI: 10.1111/j.1582-4934.2010.01008.x.
[127] B. Escudier, T. Dorval, N. Chaput, F. André. et al.(2005). Vaccination of metastatic melanoma patients with autologous dendritic cell (DC) derived-exosomes: results of thefirst phase I clinical trial. Journal of Translational Medicine.3(1):10. DOI: 10.1111/j.1582-4934.2010.01008.x.
[128] J. Li, C. A. Sherman-Baust, M. Tsai-Turton, R. E. Bristow. et al.(2009). Claudin-containing exosomes in the peripheral circulation of women with ovarian cancer. BMC Cancer.9(1):244. DOI: 10.1111/j.1582-4934.2010.01008.x.
[129] D. di Vizio, M. Morello, A. C. Dudley, P. W. Schow. et al.(2012). Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. The American Journal of Pathology.181(5):1573-1584. DOI: 10.1111/j.1582-4934.2010.01008.x.
[130] D. D. Taylor, C. Gercel-Taylor. (2008). MicroRNA signatures of tumor-derived exosomes as diagnostic biomarkers of ovarian cancer. Gynecologic Oncology.110(1):13-21. DOI: 10.1111/j.1582-4934.2010.01008.x.
[131] V. R. Minciacchi, S. You, C. Spinelli, S. Morley. et al.(2015). Large oncosomes contain distinct protein cargo and represent a separate functional class of tumor-derived extracellular vesicles. Oncotarget.6(13):11327-11341. DOI: 10.1111/j.1582-4934.2010.01008.x.
[132] J. Van Deun, P. Mestdagh, R. Sormunen, V. Cocquyt. et al.(2014). The impact of disparate isolation methods for extracellular vesicles on downstream RNA profiling. Journal of Extracellular Vesicles.3(1):24858. DOI: 10.1111/j.1582-4934.2010.01008.x.
[133] Z.-d. Wang, F.-y. Qu, Y.-y. Chen, Z.-s. Ran. et al.(2017). Involvement of microRNA-718, a new regulator of EGR3, in regulation of malignant phenotype of HCC cells. Journal of Zhejiang University-SCIENCE B.18(1):27-36. DOI: 10.1111/j.1582-4934.2010.01008.x.
[134] C. L. Au Yeung, N. N. Co, T. Tsuruga, T. L. Yeung. et al.(2016). Exosomal transfer of stroma-derived miR21 confers paclitaxel resistance in ovarian cancer cells through targeting APAF1. Nature Communications.7(1, article 11150). DOI: 10.1111/j.1582-4934.2010.01008.x.
[135] D. W. Andrews, M. Resnicoff, A. E. Flanders, L. Kenyon. et al.(2001). Results of a pilot study involving the use of an antisense oligodeoxynucleotide directed against the insulin-like growth factor type I receptor in malignant astrocytomas. Journal of Clinical Oncology.19(8):2189-2200. DOI: 10.1111/j.1582-4934.2010.01008.x.
[136] L. A. Harshyne, K. M. Hooper, E. G. Andrews, B. J. Nasca. et al.(2015). Glioblastoma exosomes and IGF-1R/AS-ODN are immunogenic stimuli in a translational research immunotherapy paradigm. Cancer Immunology, Immunotherapy.64(3):299-309. DOI: 10.1111/j.1582-4934.2010.01008.x.
[137] B. Besse, M. Charrier, V. Lapierre, E. Dansin. et al.(2015). Dendritic cell-derived exosomes as maintenance immunotherapy after first line chemotherapy in NSCLC. OncoImmunology.5(4, article e1071008). DOI: 10.1111/j.1582-4934.2010.01008.x.
[138] P. D. Robbins, A. E. Morelli. (2014). Regulation of immune responses by extracellular vesicles. Nature Reviews Immunology.14(3):195-208. DOI: 10.1111/j.1582-4934.2010.01008.x.
[139] D. W. Greening, H. P. T. Nguyen, K. Elgass, R. J. Simpson. et al.(2016). Human endometrial exosomes contain hormone-specific cargo modulating trophoblast adhesive capacity: insights into endometrial-embryo interactions. Biology of Reproduction.94(2):1-15. DOI: 10.1111/j.1582-4934.2010.01008.x.
[140] M. D. Mitchell, H. N. Peiris, M. Kobayashi, Y. Q. Koh. et al.(2015). Placental exosomes in normal and complicated pregnancy. American Journal of Obstetrics and Gynecology.213(4):S173-S181. DOI: 10.1111/j.1582-4934.2010.01008.x.
[141] K. Sugimachi, T. Matsumura, H. Hirata, R. Uchi. et al.(2015). Identification of a bona fide microRNA biomarker in serum exosomes that predicts hepatocellular carcinoma recurrence after liver transplantation. British Journal of Cancer.112(3):532-538. DOI: 10.1111/j.1582-4934.2010.01008.x.
[142] S. J. Gould, G. Raposo. (2013). As we wait: coping with an imperfect nomenclature for extracellular vesicles. Journal of Extracellular Vesicles.2(1, article 20389). DOI: 10.1111/j.1582-4934.2010.01008.x.
[143] H. G. Zhang, P. Cao, Y. Teng, X. Hu. et al.(2016). Isolation, identification, and characterization of novel nanovesicles. Oncotarget.7(27):41346-41362. DOI: 10.1111/j.1582-4934.2010.01008.x.
[144] K. Rilla, H. Siiskonen, M. Tammi, R. Tammi. et al.(2014). Chapter Five - Hyaluronan-coated extracellular vesicles—a novel link between hyaluronan and cancer. Advances in Cancer Research.123:121-148. DOI: 10.1111/j.1582-4934.2010.01008.x.
[145] L. Czernek, M. Duchler. (2017). Functions of cancer-derived extracellular vesicles in immunosuppression. Archivum Immunologiae et Therapiae Experimentalis.65(4):311-323. DOI: 10.1111/j.1582-4934.2010.01008.x.
[146] H. Ghazarian, B. Idoni, S. B. Oppenheimer. (2011). A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochemica.113(3):236-247. DOI: 10.1111/j.1582-4934.2010.01008.x.
[147] C. Frühbeis, D. Fröhlich, W. P. Kuo, J. Amphornrat. et al.(2013). Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biology.11(7, article e1001604). DOI: 10.1111/j.1582-4934.2010.01008.x.
[148] Y. Zheng, C. Tu, J. Zhang, J. Wang. et al.(2019). Inhibition of multiple myeloma‑derived exosomes uptake suppresses the functional response in bone marrow stromal cell. International Journal of Oncology.54(3):1061-1070. DOI: 10.1111/j.1582-4934.2010.01008.x.
[149] T. L. Whiteside. (2017). Exosomes in cancer: another mechanism of tumor-induced immune suppression. Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy.1036:81-89. DOI: 10.1111/j.1582-4934.2010.01008.x.
[150] C. Simon, D. W. Greening, D. Bolumar, N. Balaguer. et al.(2018). Extracellular vesicles in human reproduction in health and disease. Endocrine Reviews.39(3):292-332. DOI: 10.1111/j.1582-4934.2010.01008.x.
[151] S. L. Altieri, A. N. H. Khan, T. B. Tomasi. (2004). Exosomes from plasmacytoma cells as a tumor vaccine. Journal of Immunotherapy.27(4):282-288. DOI: 10.1111/j.1582-4934.2010.01008.x.
[152] S. A. Melo, L. B. Luecke, C. Kahlert, A. F. Fernandez. et al.(2015). Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature.523(7559):177-182. DOI: 10.1111/j.1582-4934.2010.01008.x.
[153] D. Bhagirath, T. L. Yang, N. Bucay, K. Sekhon. et al.(2018). MicroRNA-1246 is an exosomal biomarker for aggressive prostate cancer. Cancer Research.78(7):1833-1844. DOI: 10.1111/j.1582-4934.2010.01008.x.
[154] S. Dai, D. Wei, Z. Wu, X. Zhou. et al.(2008). Phase I clinical trial of autologous ascites-derived exosomes combined with GM-CSF for colorectal cancer. Molecular Therapy.16(4):782-790. DOI: 10.1111/j.1582-4934.2010.01008.x.
[155] Q. Liu, Z. Yu, S. Yuan, W. Xie. et al.(2017). Circulating exosomal microRNAs as prognostic biomarkers for non-small-cell lung cancer. Oncotarget.8(8):13048-13058. DOI: 10.1111/j.1582-4934.2010.01008.x.
[156] M. Işın, E. Uysaler, E. Özgür, H. Köseoğlu. et al.(2015). Exosomal lncRNA-p21 levels may help to distinguish prostate cancer from benign disease. Frontiers in Genetics.6:168. DOI: 10.1111/j.1582-4934.2010.01008.x.
[157] T. Kato, K. Mizutani, K. Kameyama, K. Kawakami. et al.(2015). Serum exosomal P-glycoprotein is a potential marker to diagnose docetaxel resistance and select a taxoid for patients with prostate cancer. Urologic Oncology: Seminars and Original Investigations.33(9):385.e15-385.e20. DOI: 10.1111/j.1582-4934.2010.01008.x.
[158] H. Peinado, H. Zhang, I. R. Matei, B. Costa-Silva. et al.(2017). Pre-metastatic niches: organ-specific homes for metastases. Nature Reviews Cancer.17(5):302-317. DOI: 10.1111/j.1582-4934.2010.01008.x.
[159] T. Kawamoto, N. Ohga, K. Akiyama, N. Hirata. et al.(2012). Tumor-derived microvesicles induce proangiogenic phenotype in endothelial cells via endocytosis. PloS One.7(3, article e34045). DOI: 10.1111/j.1582-4934.2010.01008.x.
[160] T. L. Whiteside. (2015). The potential of tumor-derived exosomes for noninvasive cancer monitoring. Expert Review of Molecular Diagnostics.15(10):1293-1310. DOI: 10.1111/j.1582-4934.2010.01008.x.
[161] C. Fruhbeis, D. Frohlich, W. P. Kuo, E. M. Kramer-Albers. et al.(2013). Extracellular vesicles as mediators of neuron–glia communication. Frontiers in Cellular Neuroscience.7:182. DOI: 10.1111/j.1582-4934.2010.01008.x.
[162] M. Provencio, M. Rodríguez, B. Cantos, P. Sabín. et al.(2017). mRNA in exosomas as a liquid biopsy in non-Hodgkin lymphoma: a multicentric study by the Spanish Lymphoma Oncology Group. Oncotarget.8(31):50949-50957. DOI: 10.1111/j.1582-4934.2010.01008.x.
[163] S. K. Gopal, D. W. Greening, A. Rai, M. Chen. et al.(2017). Extracellular vesicles: their role in cancer biology and epithelial-mesenchymal transition. Biochemical Journal.474(1):21-45. DOI: 10.1111/j.1582-4934.2010.01008.x.
[164] S. G. Griffiths, M. T. Cormier, A. Clayton, A. A. Doucette. et al.(2017). Differential proteome analysis of extracellular vesicles from breast cancer cell lines by chaperone affinity enrichment. Proteomes.5(4):25. DOI: 10.1111/j.1582-4934.2010.01008.x.
[165] M. E. Hung, J. N. Leonard. (2015). Stabilization of exosome-targeting peptides via engineered glycosylation. Journal of Biological Chemistry.290(13):8166-8172. DOI: 10.1111/j.1582-4934.2010.01008.x.
[166] S. L. N. Maas, X. O. Breakefield, A. M. Weaver. (2017). Extracellular vesicles: unique intercellular delivery vehicles. Trends in Cell Biology.27(3):172-188. DOI: 10.1111/j.1582-4934.2010.01008.x.
[167] R. J. Solá, K. A. I. Griebenow. (2009). Effects of glycosylation on the stability of protein pharmaceuticals. Journal of Pharmaceutical Sciences.98(4):1223-1245. DOI: 10.1111/j.1582-4934.2010.01008.x.
[168] M. W. Graner, O. Alzate, A. M. Dechkovskaia, J. D. Keene. et al.(2009). Proteomic and immunologic analyses of brain tumor exosomes. The FASEB Journal.23(5):1541-1557. DOI: 10.1111/j.1582-4934.2010.01008.x.
[169] M. Agostini, S. Pucciarelli, F. Calore, C. Bedin. et al.(2010). miRNAs in colon and rectal cancer: a consensus for their true clinical value. Clinica Chimica Acta.411(17-18):1181-1186. DOI: 10.1111/j.1582-4934.2010.01008.x.
[170] J. Wolfers, A. Lozier, G. Raposo, A. Regnault. et al.(2001). Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nature Medicine.7(3):297-303. DOI: 10.1111/j.1582-4934.2010.01008.x.
[171] W. Guo, Y. Gao, N. Li, F. Shao. et al.(2017). Exosomes: new players in cancer (Review). Oncology Reports.38(2):665-675. DOI: 10.1111/j.1582-4934.2010.01008.x.
[172] M. Zhu, Z. Huang, D. Zhu, X. Zhou. et al.(2017). A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget.8(10):17081-17091. DOI: 10.1111/j.1582-4934.2010.01008.x.
[173] C. Liu, C. Eng, J. Shen, Y. Lu. et al.(2016). Serum exosomal miR-4772-3p is a predictor of tumor recurrence in stage II and III colon cancer. Oncotarget.7(46):76250-76260. DOI: 10.1111/j.1582-4934.2010.01008.x.
[174] R. J. Sola, K. Griebenow. (2010). Glycosylation of therapeutic proteins: an effective strategy to optimize efficacy. BioDrugs.24(1):9-21. DOI: 10.1111/j.1582-4934.2010.01008.x.
[175] T. Goto, M. Fujiya, H. Konishi, J. Sasajima. et al.(2018). An elevated expression of serum exosomal microRNA-191, -21,-451a of pancreatic neoplasm is considered to be efficient diagnostic marker. BMC Cancer.18(1):116. DOI: 10.1111/j.1582-4934.2010.01008.x.
[176] K. Ohtsubo, J. D. Marth. (2006). Glycosylation in cellular mechanisms of health and disease. Cell.126(5):855-867. DOI: 10.1111/j.1582-4934.2010.01008.x.
[177] F. Fu, W. Jiang, L. Zhou, Z. Chen. et al.(2018). Circulating exosomal miR-17-5p and miR-92a-3p predict pathologic stage and grade of colorectal cancer. Translational oncology.11(2):221-232. DOI: 10.1111/j.1582-4934.2010.01008.x.
[178] V. Budnik, C. Ruiz-Canada, F. Wendler. (2016). Extracellular vesicles round off communication in the nervous system. Nature Reviews Neuroscience.17(3):160-172. DOI: 10.1111/j.1582-4934.2010.01008.x.
[179] R. Shi, P. Y. Wang, X. Y. Li, J. X. Chen. et al.(2015). Exosomal levels of miRNA-21 from cerebrospinal fluids associated with poor prognosis and tumor recurrence of glioma patients. Oncotarget.6(29):26971-26981. DOI: 10.1111/j.1582-4934.2010.01008.x.
[180] Y. T. Sato, K. Umezaki, S. Sawada, S. A. Mukai. et al.(2016). Engineering hybrid exosomes by membrane fusion with liposomes. Scientific Reports.6(1, article 21933). DOI: 10.1111/j.1582-4934.2010.01008.x.
[181] A. Hoshino, B. Costa-Silva, T. L. Shen, G. Rodrigues. et al.(2015). Tumour exosome integrins determine organotropic metastasis. Nature.527(7578):329-335. DOI: 10.1111/j.1582-4934.2010.01008.x.
[182] D. Hanahan, R. A. Weinberg. (2011). Hallmarks of cancer: the next generation. Cell.144(5):646-674. DOI: 10.1111/j.1582-4934.2010.01008.x.
[183] J. C. Akers, V. Ramakrishnan, R. Kim, J. Skog. et al.(2013). miR-21 in the extracellular vesicles (EVs) of cerebrospinal fluid (CSF): a platform for glioblastoma biomarker development. PloS One.8(10, article e78115). DOI: 10.1111/j.1582-4934.2010.01008.x.
[184] J. Skog, T. Würdinger, S. van Rijn, D. H. Meijer. et al.(2008). Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology.10(12):1470-1476. DOI: 10.1111/j.1582-4934.2010.01008.x.
[185] A. T. Jan, S. Rahman, S. Khan, S. A. Tasduq. et al.(2019). Biology, pathophysiological role, and clinical implications of exosomes: a critical appraisal. Cells.8(2):99. DOI: 10.1111/j.1582-4934.2010.01008.x.
[186] K. Shimbo, S. Miyaki, H. Ishitobi, Y. Kato. et al.(2014). Exosome-formed synthetic microRNA-143 is transferred to osteosarcoma cells and inhibits their migration. Biochemical and Biophysical Research Communications.445(2):381-387. DOI: 10.1111/j.1582-4934.2010.01008.x.
[187] I. Levental, F. J. Byfield, P. Chowdhury, F. Gai. et al.(2009). Cholesterol-dependent phase separation in cell-derived giant plasma-membrane vesicles. Biochemical Journal.424(2):163-167. DOI: 10.1111/j.1582-4934.2010.01008.x.
[188] K. Kunigelis, M. Graner. (2015). The dichotomy of tumor exosomes (TEX) in cancer immunity: is it all in the ConTEXt?. Vaccines.3(4):1019-1051. DOI: 10.1111/j.1582-4934.2010.01008.x.
[189] E. J. Bunggulawa, W. Wang, T. Yin, N. Wang. et al.(2018). Recent advancements in the use of exosomes as drug delivery systems. Journal of Nanobiotechnology.16(1):81. DOI: 10.1111/j.1582-4934.2010.01008.x.
[190] K. Tang, Y. Zhang, H. Zhang, P. Xu. et al.(2012). Delivery of chemotherapeutic drugs in tumour cell-derived microparticles. Nature Communications.3(1, article 1282). DOI: 10.1111/j.1582-4934.2010.01008.x.
[191] T. Baumgart, A. T. Hammond, P. Sengupta, S. T. Hess. et al.(2007). Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles. Proceedings of the National Academy of Sciences of the United States of America.104(9):3165-3170. DOI: 10.1111/j.1582-4934.2010.01008.x.
[192] Z. Zhao, D. C. Muth, K. Mulka, B. H. Powell. et al.miRNA profiling of primate cervicovaginal lavage and extracellular vesicles reveals miR-186-5p as a potential retroviral restriction factor in macrophages. . DOI: 10.1111/j.1582-4934.2010.01008.x.
[193] S. C. Jang, O. Y. Kim, C. M. Yoon, D. S. Choi. et al.(2013). Bioinspired exosome-mimetic nanovesicles for targeted delivery of chemotherapeutics to malignant tumors. ACS Nano.7(9):7698-7710. DOI: 10.1111/j.1582-4934.2010.01008.x.
[194] C. S. Hong, L. Muller, M. Boyiadzis, T. L. Whiteside. et al.(2014). Isolation and characterization of CD34+ blast-derived exosomes in acute myeloid leukemia. PloS One.9(8, article e103310). DOI: 10.1111/j.1582-4934.2010.01008.x.
[195] C. Schmitt, A. H. Lippert, N. Bonakdar, V. Sandoghdar. et al.(2016). Compartmentalization and transport in synthetic vesicles. Frontiers in Bioengineering and Biotechnology.4:19. DOI: 10.1111/j.1582-4934.2010.01008.x.
[196] E. Brambilla, A. Gazdar. (2009). Pathogenesis of lung cancer signalling pathways: roadmap for therapies. European Respiratory Journal.33(6):1485-1497. DOI: 10.1111/j.1582-4934.2010.01008.x.
[197] Q. Lin, E. London. (2014). Preparation of artificial plasma membrane mimicking vesicles with lipid asymmetry. PloS One.9(1, article e87903). DOI: 10.1111/j.1582-4934.2010.01008.x.
[198] H. Peinado, M. Alečković, S. Lavotshkin, I. Matei. et al.(2012). Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nature Medicine.18(6):883-891. DOI: 10.1111/j.1582-4934.2010.01008.x.
[199] G. Rabinowits, C. Gercel-Taylor, J. M. Day, D. D. Taylor. et al.(2009). Exosomal microRNA: a diagnostic marker for lung cancer. Clinical Lung Cancer.10(1):42-46. DOI: 10.1111/j.1582-4934.2010.01008.x.
[200] M. Rodríguez, J. Silva, A. López-Alfonso, M. B. López-Muñiz. et al.(2014). Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes, Chromosomes and Cancer.53(9):713-724. DOI: 10.1111/j.1582-4934.2010.01008.x.
[201] K. Yuyama, H. Sun, S. Sakai, S. Mitsutake. et al.(2014). Decreased amyloid- pathologies by intracerebral loading of glycosphingolipid-enriched exosomes in Alzheimer model mice. Journal of Biological Chemistry.289(35):24488-24498. DOI: 10.1111/j.1582-4934.2010.01008.x.
[202] I. H. Chen, L. Xue, C. C. Hsu, J. S. P. Paez. et al.(2017). Phosphoproteins in extracellular vesicles as candidate markers for breast cancer. Proceedings of the National Academy of Sciences of the United States of America.114(12):3175-3180. DOI: 10.1111/j.1582-4934.2010.01008.x.
[203] G. Raposo, W. Stoorvogel. (2013). Extracellular vesicles: exosomes, microvesicles, and friends. The Journal of Cell Biology.200(4):373-383. DOI: 10.1111/j.1582-4934.2010.01008.x.
[204] N. I. Hornick, J. Huan, B. Doron, N. A. Goloviznina. et al.(2015). Serum exosome microRNA as a minimally-invasive early biomarker of AML. Scientific Reports.5(1, article 11295). DOI: 10.1111/j.1582-4934.2010.01008.x.
[205] K. A. Ahmed, J. Xiang. (2011). Mechanisms of cellular communication through intercellular protein transfer. Journal of Cellular and Molecular Medicine.15(7):1458-1473. DOI: 10.1111/j.1582-4934.2010.01008.x.
[206] J. M. Pitt, G. Kroemer, L. Zitvogel. (2016). Extracellular vesicles: masters of intercellular communication and potential clinical interventions. The Journal of Clinical Investigation.126(4):1139-1143. DOI: 10.1111/j.1582-4934.2010.01008.x.
[207] C. Williams, F. Royo, O. Aizpurua-Olaizola, R. Pazos. et al.(2018). Glycosylation of extracellular vesicles: current knowledge, tools and clinical perspectives. Journal of Extracellular Vesicles.7(1, article 1442985). DOI: 10.1111/j.1582-4934.2010.01008.x.
[208] C. Théry, K. W. Witwer, E. Aikawa, M. J. Alcaraz. et al.(2018). Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. Journal of Extracellular Vesicles.7(1, article 1535750). DOI: 10.1111/j.1582-4934.2010.01008.x.
[209] M. Tkach, C. Thery. (2016). Communication by extracellular vesicles: where we are and where we need to go. Cell.164(6):1226-1232. DOI: 10.1111/j.1582-4934.2010.01008.x.
[210] T. Kogure, I. K. Yan, W. L. Lin, T. Patel. et al.(2013). Extracellular vesicle-mediated transfer of a novel long noncoding RNA TUC339: a mechanism of intercellular signaling in human hepatocellular cancer. Genes & Cancer.4(7-8):261-272. DOI: 10.1111/j.1582-4934.2010.01008.x.
[211] J. Kowal, G. Arras, M. Colombo, M. Jouve. et al.(2016). Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences of the United States of America.113(8):E968-E977. DOI: 10.1111/j.1582-4934.2010.01008.x.
[212] J. M. Pitt, F. Andre, S. Amigorena, J. C. Soria. et al.(2016). Dendritic cell-derived exosomes for cancer therapy. The Journal of Clinical Investigation.126(4):1224-1232. DOI: 10.1111/j.1582-4934.2010.01008.x.
[213] H. Peinado, S. Lavotshkin, D. Lyden. (2011). The secreted factors responsible for pre-metastatic niche formation: old sayings and new thoughts. Seminars in Cancer Biology.21(2):139-146. DOI: 10.1111/j.1582-4934.2010.01008.x.
[214] T. M. Allen, P. R. Cullis. (2013). Liposomal drug delivery systems: from concept to clinical applications. Advanced Drug Delivery Reviews.65(1):36-48. DOI: 10.1111/j.1582-4934.2010.01008.x.
[215] R. S. Conlan, S. Pisano, M. I. Oliveira, M. Ferrari. et al.(2017). Exosomes as reconfigurable therapeutic systems. Trends in Molecular Medicine.23(7):636-650. DOI: 10.1111/j.1582-4934.2010.01008.x.
[216] N. Seo, Y. Shirakura, Y. Tahara, F. Momose. et al.(2018). Activated CD8 T cell extracellular vesicles prevent tumour progression by targeting of lesional mesenchymal cells. Nature Communications.9(1, article 435). DOI: 10.1111/j.1582-4934.2010.01008.x.
[217] A. Akbarzadeh, R. Rezaei-Sadabady, S. Davaran, S. W. Joo. et al.(2013). Liposome: classification, preparation, and applications. Nanoscale Research Letters.8(1):102. DOI: 10.1111/j.1582-4934.2010.01008.x.
[218] N. L. Syn, L. Wang, E. K.-H. Chow, C. T. Lim. et al.(2017). Exosomes in cancer nanomedicine and immunotherapy: prospects and challenges. Trends in Biotechnology.35(7):665-676. DOI: 10.1111/j.1582-4934.2010.01008.x.
[219] H. Saari, E. Lazaro-Ibanez, T. Viitala, E. Vuorimaa-Laukkanen. et al.(2015). Microvesicle- and exosome-mediated drug delivery enhances the cytotoxicity of Paclitaxel in autologous prostate cancer cells. Journal of Controlled Release.220:727-737. DOI: 10.1111/j.1582-4934.2010.01008.x.
[220] L. Pascucci, V. Coccè, A. Bonomi, D. Ami. et al.(2014). Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit tumor growth: a new approach for drug delivery. Journal of Controlled Release.192:262-270. DOI: 10.1111/j.1582-4934.2010.01008.x.
[221] A. Matzke-Ogi, K. Jannasch, M. Shatirishvili, B. Fuchs. et al.(2016). Inhibition of tumor growth and metastasis in pancreatic cancer models by interference with CD44v6 signaling. Gastroenterology.150(2):513-525.e10. DOI: 10.1111/j.1582-4934.2010.01008.x.
[222] Q. Yang, M. P. Diamond, A. Al-Hendy. (2016). The emerging role of extracellular vesicle-derived miRNAs: implication in cancer progression and stem cell related diseases. Journal of Clinical Epigenetics.2(1). DOI: 10.1111/j.1582-4934.2010.01008.x.
[223] F. Guo, C. K. Chang, H. H. Fan, X. X. Nie. et al.(2008). Anti-tumour effects of exosomes in combination with cyclophosphamide and polyinosinic-polycytidylic acid. Journal of International Medical Research.36(6):1342-1353. DOI: 10.1111/j.1582-4934.2010.01008.x.
[224] B. Madhavan, S. Yue, U. Galli, S. Rana. et al.(2015). Combined evaluation of a panel of protein and miRNA serum-exosome biomarkers for pancreatic cancer diagnosis increases sensitivity and specificity. International Journal of Cancer.136(11):2616-2627. DOI: 10.1111/j.1582-4934.2010.01008.x.
[225] D. M. Pegtel, L. Peferoen, S. Amor. (2014). Extracellular vesicles as modulators of cell-to-cell communication in the healthy and diseased brain. Philosophical Transactions of the Royal Society B: Biological Sciences.369(1652, article 20130516). DOI: 10.1111/j.1582-4934.2010.01008.x.
[226] A. Shimoda, Y. Tahara, S. I. Sawada, Y. Sasaki. et al.(2017). Glycan profiling analysis using evanescent-field fluorescence-assisted lectin array: importance of sugar recognition for cellular uptake of exosomes from mesenchymal stem cells. Biochemical and Biophysical Research Communications.491(3):701-707. DOI: 10.1111/j.1582-4934.2010.01008.x.
[227] N. P. Hessvik, A. Llorente. (2018). Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences.75(2):193-208. DOI: 10.1111/j.1582-4934.2010.01008.x.
[228] H. Zhang, B. Huang. (2015). Tumor cell-derived microparticles: a new form of cancer vaccine. OncoImmunology.4(8, article e1017704). DOI: 10.1111/j.1582-4934.2010.01008.x.
[229] T. Akagi, K. Kato, M. Kobayashi, N. Kosaka. et al.(2015). On-chip immunoelectrophoresis of extracellular vesicles released from human breast cancer cells. PloS One.10(4, article e0123603). DOI: 10.1111/j.1582-4934.2010.01008.x.
[230] S. N. Hurwitz, M. A. Rider, J. L. Bundy, X. Liu. et al.(2016). Proteomic profiling of NCI-60 extracellular vesicles uncovers common protein cargo and cancer type-specific biomarkers. Oncotarget.7(52):86999-87015. DOI: 10.1111/j.1582-4934.2010.01008.x.
文献评价指标
浏览 213次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次