首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-07-24
Protocatechuic Acid-Mediated miR-219a-5p Activation Inhibits the p66shc Oxidant Pathway to Alleviate Alcoholic Liver Injury
Research Article
Rong Fu 1 Junjun Zhou 1 Ruiwen Wang 1 Ruimin Sun 1 Dongcheng Feng 2 Zhecheng Wang 1 Yan Zhao 1 Li Lv 1 Xiaofeng Tian 2 Jihong Yao 1
Show affiliations
Received 2018-12-10, accepted for publication 2019-06-25, Published 2019-06-25

Alcohol abuse has become common worldwide and has been recognized as a major cause of chronic alcoholic liver disease (ALD). ALD encompasses a complex process that includes a broad scope of hepatic lesions, ranging from steatosis to cirrhosis. In particular, reactive oxygen species (ROS) are mainly involved. Numerous studies have shown that p66shc plays a significant role in ALD. Protocatechuic acid (PCA), a dihydroxybenzoic acid that is naturally found in green tea, vegetables, and fruits, has efficient free radical scavenging effects. In this study, we aimed to assess the protective effect of PCA on ALD and to evaluate the microRNA- (miRNA-) p66shc-mediated reduction of ROS formation in ALD. Our results demonstrated that PCA treatment significantly decreased p66shc expression and downstream ROS formation in ALD. miR-219a-5p, which was identified by bioinformatics and experimental analysis, was enhanced by PCA and subsequently suppressed p66shc expression. Importantly, p66shc played an essential role in the protection of PCA-stimulated miR-219a-5p overexpression. Overall, these findings show that PCA-stimulated miR-219a-5p expression mitigates ALD by reducing p66shc-mediated ROS formation. This study may contribute to the development of therapeutic interventions for ALD.


Copyright © 2019 Rong Fu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Jihong Yao.Department of Pharmacology, Dalian Medical University, Dalian 116044, China, dlmedu.edu.cn.yaojihong65@hotmail.com


Rong Fu,Junjun Zhou,Ruiwen Wang,Ruimin Sun,Dongcheng Feng,Zhecheng Wang,Yan Zhao,Li Lv,Xiaofeng Tian,Jihong Yao. Protocatechuic Acid-Mediated miR-219a-5p Activation Inhibits the p66shc Oxidant Pathway to Alleviate Alcoholic Liver Injury. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)



[1] F. Momen-Heravi, S. Bala, K. Kodys, G. Szabo. et al.(2015). Exosomes derived from alcohol-treated hepatocytes horizontally transfer liver specific miRNA-122 and sensitize monocytes to LPS. Scientific Reports.5(1). DOI: 10.1053/j.gastro.2015.11.030.
[2] H. Vohr. (2005). Oxidative stress. . DOI: 10.1053/j.gastro.2015.11.030.
[3] R. P. Dippold, R. Vadigepalli, G. E. Gonye, B. Patra. et al.(2013). Chronic ethanol feeding alters miRNA expression dynamics during liver regeneration. Alcoholism, Clinical and Experimental Research.37:E59-E69. DOI: 10.1053/j.gastro.2015.11.030.
[4] S. Li, H. Y. Tan, N. Wang, Z. J. Zhang. et al.(2015). The role of oxidative stress and antioxidants in liver diseases. International Journal of Molecular Sciences.16(11):26087-26124. DOI: 10.1053/j.gastro.2015.11.030.
[5] P. O. Seglen. (1976). Chapter 4 Preparation of Isolated Rat Liver Cells. Methods in Cell Biology.13:29-83. DOI: 10.1053/j.gastro.2015.11.030.
[6] J. M. HUR, J. G. PARK, K. H. YANG, J. C. PARK. et al.(2003). Effect of methanol extract of Zanthoxylum piperitum leaves and of its compound, protocatechuic acid, on hepatic drug metabolizing enzymes and lipid peroxidation in rats. Bioscience, Biotechnology, and Biochemistry.67(5):945-950. DOI: 10.1053/j.gastro.2015.11.030.
[7] B. Saha, J. C. Bruneau, K. Kodys, G. Szabo. et al.(2015). Alcohol-induced miR-27a regulates differentiation and M2 macrophage polarization of normal human monocytes. Journal of Immunology.194(7):3079-3087. DOI: 10.1053/j.gastro.2015.11.030.
[8] L. Gao, W. Shan, W. Zeng, Y. Hu. et al.(2016). Carnosic acid alleviates chronic alcoholic liver injury by regulating the SIRT1/ChREBP and SIRT1/p66shc pathways in rats. Molecular Nutrition & Food Research.60(9):1902-1911. DOI: 10.1053/j.gastro.2015.11.030.
[9] O. R. Koch, S. Fusco, S. C. Ranieri, G. Maulucci. et al.(2008). Role of the life span determinant P66shcA in ethanol-induced liver damage. Laboratory Investigation.88(7):750-760. DOI: 10.1053/j.gastro.2015.11.030.
[10] E. Beltrami, S. Valtorta, R. Moresco, R. Marcu. et al.(2013). The p53-p66Shc apoptotic pathway is dispensable for tumor suppression whereas the p66Shc-generated oxidative stress initiates tumorigenesis. Current Pharmaceutical Design.19(15):2708-2714. DOI: 10.1053/j.gastro.2015.11.030.
[11] Z. Derdak, K. A. Villegas, J. R. Wands. (2012). Early growth response-1 transcription factor promotes hepatic fibrosis and steatosis in long-term ethanol-fed Long-Evans rats. Liver International.32(5):761-770. DOI: 10.1053/j.gastro.2015.11.030.
[12] C. S. Pavlov, G. Casazza, M. Semenistaia, D. Nikolova. et al.(2016). Ultrasonography for diagnosis of alcoholic cirrhosis in people with alcoholic liver disease. Cochrane Database of Systematic Reviews(3). DOI: 10.1053/j.gastro.2015.11.030.
[13] S. Haga, K. Terui, M. Fukai, Y. Oikawa. et al.(2008). Preventing hypoxia/reoxygenation damage to hepatocytes by p66shc ablation: Up-regulation of anti-oxidant and anti-apoptotic proteins. Journal of Hepatology.48(3):422-432. DOI: 10.1053/j.gastro.2015.11.030.
[14] M. Thiele, S. Detlefsen, L. Sevelsted Møller, B. S. Madsen. et al.(2016). Transient and 2-dimensional shear-wave elastography provide comparable assessment of alcoholic liver fibrosis and cirrhosis. Gastroenterology.150(1):123-133. DOI: 10.1053/j.gastro.2015.11.030.
[15] E. Ceni, T. Mello, A. Galli. (2014). Pathogenesis of alcoholic liver disease: role of oxidative metabolism. World Journal of Gastroenterology.20(47):17756-17772. DOI: 10.1053/j.gastro.2015.11.030.
[16] J. Rehm, A. V. Samokhvalov, K. D. Shield. (2013). Global burden of alcoholic liver diseases. Journal of Hepatology.59(1):160-168. DOI: 10.1053/j.gastro.2015.11.030.
[17] G. Szabo. (2015). Gut-liver axis in alcoholic liver disease. Gastroenterology.148(1):30-36. DOI: 10.1053/j.gastro.2015.11.030.
[18] S. A. Adefegha, O. S. Omojokun, G. Oboh. (2015). Modulatory effect of protocatechuic acid on cadmium induced nephrotoxicity and hepatoxicity in rats in vivo. Springerplus.4(1):619. DOI: 10.1053/j.gastro.2015.11.030.
[19] S. Liangpunsakul, D. W. Crabb. (2016). Early detection of alcoholic liver disease: are we a step closer?. Gastroenterology.150(1):29-31. DOI: 10.1053/j.gastro.2015.11.030.
[20] Q. Li, Y. R. Kim, A. Vikram, S. Kumar. et al.(2016). P66Shc-induced microRNA-34a causes diabetic endothelial dysfunction by downregulating sirtuin1. Arteriosclerosis, Thrombosis, and Vascular Biology.36(12):2394-2403. DOI: 10.1053/j.gastro.2015.11.030.
[21] X. Dong, H. Liu, F. Chen, D. Li. et al.(2014). MiR-214 promotes the alcohol-induced oxidative stress via down-regulation of glutathione reductase and cytochrome P450 oxidoreductase in liver cells. Alcoholism, Clinical and Experimental Research.38(1):68-77. DOI: 10.1053/j.gastro.2015.11.030.
[22] K. McDaniel, L. Herrera, T. Zhou, H. Francis. et al.(2014). The functional role of microRNAs in alcoholic liver injury. Journal of Cellular and Molecular Medicine.18(2):197-207. DOI: 10.1053/j.gastro.2015.11.030.
[23] J. S. Lane, K. E. Todd, M. P. N. Lewis, B. Gloor. et al.(1997). Interleukin-10 reduces the systemic inflammatory response in a murine model of intestinal ischemia/reperfusion. Surgery.122(2):288-294. DOI: 10.1053/j.gastro.2015.11.030.
[24] M. Giorgio, E. Migliaccio, F. Orsini, D. Paolucci. et al.(2005). Electron transfer between cytochrome c and p66Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell.122(2):221-233. DOI: 10.1053/j.gastro.2015.11.030.
[25] C. J. Pirola, T. Fernández Gianotti, G. O. Castaño, P. Mallardi. et al.(2015). Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut.64(5):800-812. DOI: 10.1053/j.gastro.2015.11.030.
[26] L. Zhou, Y. Peng, Q. Wang, Q. Lin. et al.(2017). An ESIPT-based two-photon fluorescent probe detection of hydrogen peroxide in live cells and tissues. Journal of Photochemistry and Photobiology. B.167:264-268. DOI: 10.1053/j.gastro.2015.11.030.
[27] K. Chan, S. H. Chui, D. Y. L. Wong, W. Y. Ha. et al.(2004). Protective effects of danshensu from the aqueous extract of Salvia miltiorrhiza (Danshen) against homocysteine-induced endothelial dysfunction. Life Sciences.75(26):3157-3171. DOI: 10.1053/j.gastro.2015.11.030.
[28] J. R. Neilson, P. A. Sharp. (2008). Small RNA regulators of gene expression. Cell.134(6):899-902. DOI: 10.1053/j.gastro.2015.11.030.
[29] V. Krajka-Kuźniak, H. Szaefer, W. Baer-Dubowska. (2008). Hepatic and extrahepatic expression of glutathione S-transferase isozymes in mice and its modulation by naturally occurring phenolic acids. Environmental Toxicology and Pharmacology.25(1):27-32. DOI: 10.1053/j.gastro.2015.11.030.
[30] Y. Tang, L. Zhang, C. B. Forsyth, M. Shaikh. et al.(2015). The role of miR-212 and iNOS in alcohol-induced intestinal barrier dysfunction and steatohepatitis. Alcoholism, Clinical and Experimental Research.39(9):1632-1641. DOI: 10.1053/j.gastro.2015.11.030.
[31] I. Berniakovich, M. Trinei, M. Stendardo, E. Migliaccio. et al.(2008). p66Shc-generated oxidative signal promotes fat accumulation. The Journal of Biological Chemistry.283(49):34283-34293. DOI: 10.1053/j.gastro.2015.11.030.
[32] M. Almeida, L. Han, E. Ambrogini, S. M. Bartell. et al.(2010). Oxidative Stress Stimulates Apoptosis and Activates NF-B in Osteoblastic Cells via a PKC/p66shcSignaling Cascade: Counter Regulation by Estrogens or Androgens. Molecular Endocrinology.24(10):2030-2037. DOI: 10.1053/j.gastro.2015.11.030.
[33] Q.-H. Huang, L.-Q. Xu, Y.-H. Liu, J.-Z. Wu. et al.(2017). Polydatin Protects Rat Liver against Ethanol-Induced Injury: Involvement of CYP2E1/ROS/Nrf2 and TLR4/NF-B p65 Pathway. Evidence-based Complementary and Alternative Medicine.2017-14. DOI: 10.1053/j.gastro.2015.11.030.
[34] J. N. Heinrich, S. P. Kwak, D. S. Howland, J. Chen. et al.(2006). Disruption of ShcA signaling halts cell proliferation--characterization of ShcC residues that influence signaling pathways using yeast. Cellular Signalling.18(6):795-806. DOI: 10.1053/j.gastro.2015.11.030.
[35] T. M. Leung, N. Nieto. (2013). CYP2E1 and oxidant stress in alcoholic and non-alcoholic fatty liver disease. Journal of Hepatology.58(2):395-398. DOI: 10.1053/j.gastro.2015.11.030.
[36] G. Z. Wang, J. H. Yao, H. R. Jing, F. Zhang. et al.(2012). Suppression of the p66shc adapter protein by protocatechuic acid prevents the development of lung injury induced by intestinal ischemia reperfusion in mice. Journal of Trauma and Acute Care Surgery.73(5):1130-1137. DOI: 10.1053/j.gastro.2015.11.030.
[37] L. Ma, G. Wang, Z. Chen, Z. Li. et al.(2014). Modulating the p66shc signaling pathway with protocatechuic acid protects the intestine from ischemia-reperfusion injury and alleviates secondary liver damage. The Scientific World Journal.2014-11. DOI: 10.1053/j.gastro.2015.11.030.
[38] G. C. Shukla, J. Singh, S. Barik. (2011). MicroRNAs: processing, maturation, target recognition and regulatory functions. Molecular and Cellular Pharmacology.3(3):83-92. DOI: 10.1053/j.gastro.2015.11.030.
浏览 20次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次