首页 » 文章 » 文章详细信息
Journal of Spectroscopy Volume 2019 ,2019-07-24
Identification of Tilletia foetida, Ustilago tritici, and Urocystis tritici Based on Near-Infrared Spectroscopy
Research Article
Yaqiong Zhao 1 Feng Qin 1 Fei Xu 2 Jinxing Ma 1 Zhenyu Sun 3 Yuli Song 2 Longlian Zhao 4 Junhui Li 4 Haiguang Wang 1
Show affiliations
DOI:10.1155/2019/9753829
Received 2019-02-14, accepted for publication 2019-07-09, Published 2019-07-09
PDF
摘要

Identifying plant pathogens for disease diagnosis and disease control strategy making is of great significance. In this study, based on near-infrared spectroscopy, a method for identifying three kinds of pathogens causing wheat smuts, including Tilletia foetida, Ustilago tritici, and Urocystis tritici, was investigated. Based on the acquired near-infrared spectral data of the teliospore samples of the three pathogens, pathogen identification models were built in different spectral regions using distinguished partial least squares (DPLS), backpropagation neural network (BPNN), and support vector machine (SVM). Satisfactory identification results were achieved using the DPLS, BPNN, and SVM models built in each of the 22 spectral regions. By contrast, the modeling effects of DPLS and SVM were better than those of BPNN. The modeling ratio of the training set to the testing set affected the identification results of the BPNN models more than those obtained using the DPLS and SVM models. In this study, a rapid, accurate, and nondestructive method was provided for plant pathogen identification, and some basis was provided for disease diagnosis, pathogen monitoring, and disease control. Moreover, some methodological references and supports were provided for identification of quarantine wheat smut fungi in plant quarantine.

授权许可

Copyright © 2019 Yaqiong Zhao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Haiguang Wang.College of Plant Protection, China Agricultural University, Beijing 100193, China, cau.edu.cn.wanghaiguang@cau.edu.cn

推荐引用方式

Yaqiong Zhao,Feng Qin,Fei Xu,Jinxing Ma,Zhenyu Sun,Yuli Song,Longlian Zhao,Junhui Li,Haiguang Wang. Identification of Tilletia foetida, Ustilago tritici, and Urocystis tritici Based on Near-Infrared Spectroscopy. Journal of Spectroscopy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Lopo, C. A. Teixeira dos Santos, R. N. M. J. Páscoa, A. R. Graça. et al.(2018). Near-infrared spectroscopy as a tool for intensive mapping of vineyards soil. Precision Agriculture.19(3):445-462. DOI: 10.1094/pd-70-924.
[2] X. L. Li, F. Qin, L. L. Zhao, J. H. Li. et al.(2015). Identification and classification of disease severity of wheat stripe rust using near-infrared spectroscopy technology. Spectroscopy and Spectral Analysis.35(2):367-371. DOI: 10.1094/pd-70-924.
[3] W. Dong, W. Q. Chen, T. G. Liu. (2007). Identification and detection methods of Kühn. Plant Protection.33(6):128-131. DOI: 10.1094/pd-70-924.
[4] X. L. Li, Z. H. Ma, L. L. Zhao, J. H. Li. et al.(2014). Application of near-infrared spectroscopy to qualitative identification and quantitative determination of f. sp. and f. sp.. Spectroscopy and Spectral Analysis.34(3):643-647. DOI: 10.1094/pd-70-924.
[5] H. G. Wang, H. Y. Zhu, Z. H. Ma, L. Liu. et al.(2005). The progress and prospect in research on wheat dwarf bunt. Review of China Agricultural Science and Technology.7(4):21-27. DOI: 10.1094/pd-70-924.
[6] L. Feng, S. S. Chen, B. Feng, F. Liu. et al.(2012). Early detection of soybean pod anthracnose based on spectrum technology. Transactions of the Chinese Society of Agricultural Engineering.28(1):139-144. DOI: 10.1094/pd-70-924.
[7] Y. D. Liu, H. C. Xiao, Q. Deng, Z. C. Zhang. et al.(2016). Nondestructive detection of citrus greening by near-infrared spectroscopy. Transactions of the Chinese Society of Agricultural Engineering.32(14):202-208. DOI: 10.1094/pd-70-924.
[8] L. H. Purdy. (1965). Flag smut of wheat. The Botanical Review.31(4):565-606. DOI: 10.1094/pd-70-924.
[9] V. O. Stockwell, E. J. Trione. (1986). Distinguishing teliospores of from those of fluorescence microscopy. Plant Disease.70(10):924-926. DOI: 10.1094/pd-70-924.
[10] H. Liang, Y. L. Peng, G. Z. Zhang, W. Q. Chen. et al.(2006). Amplification and sequence analysis of the rDNA intergenic spacer (rDNA-IGS) from three species. Acta Phytopathologica Sinica.36(5):407-412. DOI: 10.1094/pd-70-924.
[11] Y. L. Yan, L. L. Zhao, D. H. Han, S. M. Yang. et al.(2005). Basis and Application of Near-infrared Reflectance Spectroscopy. DOI: 10.1094/pd-70-924.
[12] Q. Chen, J. Zhao, M. Liu, J. Cai. et al.(2008). Determination of total polyphenols content in green tea using FT-NIR spectroscopy and different PLS algorithms. Journal of Pharmaceutical and Biomedical Analysis.46(3):568-573. DOI: 10.1094/pd-70-924.
[13] M. K. Ahmed, J. Levenson. (2012). Application of near-infrared spectroscopy to the quality assurance of ethanol and butanol blended gasoline. Petroleum Science and Technology.30(2):115-121. DOI: 10.1094/pd-70-924.
[14] R. D. Frederick, K. E. Snyder, P. W. Tooley. (2000). Identification and differentiation of and . using the polymerase chain reaction. Phytopathology.90(9):951-960. DOI: 10.1094/pd-70-924.
[15] X. L. Li, F. Qin, L. L. Zhao, J. H. Li. et al.(2014). Detection of f. sp. latent infections in wheat leaves using near-infrared spectroscopy technology. Spectroscopy and Spectral Analysis.34(7):1853-1858. DOI: 10.1094/pd-70-924.
[16] X. L. Li, Z. H. Ma, L. L. Zhao, J. H. Li. et al.(2013). Early diagnosis of wheat stripe rust and wheat leaf rust using near-infrared spectroscopy. Spectroscopy and Spectral Analysis.33(10):2661-2665. DOI: 10.1094/pd-70-924.
[17] D. Granato, P. Putnik, D. B. Kovačević. (2018). Trends in chemometrics: food authentication, microbiology, and effects of processing. Comprehensive Reviews in Food Science and Food Safety.17(3):663-677. DOI: 10.1094/pd-70-924.
[18] C. Pasquini. (2018). Near-infrared spectroscopy: a mature analytical technique with new perspectives—a review. Analytica Chimica Acta.1026:8-36. DOI: 10.1094/pd-70-924.
[19] Y. Q. Zhao, Y. L. Gu, F. Qin. (2017). Application of near-infrared spectroscopy to quantitatively determine relative content of f. sp. DNA in wheat leaves in incubation period. Journal of Spectroscopy.2017-12. DOI: 10.1094/pd-70-924.
[20] Y. Y. Cao, L. F. Wang, L. P. Duan. (2017). Development of a real-time fluorescence loop-mediated isothermal amplification assay for rapid and quantitative detection of. Scientific Reports.7. DOI: 10.1094/pd-70-924.
[21] L. Guo. (2015). Taxonomy of smut fungi in China: a brief review. Mycosystema.34(5):817-820. DOI: 10.1094/pd-70-924.
[22] P. I. Monteiro, J. S. Santos, V. R. Alvarenga Brizola. (2018). Comparison between proton transfer reaction mass spectrometry and near-infrared spectroscopy for the authentication of Brazilian coffee: a preliminary chemometric study. Food Control.91:276-283. DOI: 10.1094/pd-70-924.
[23] X. L. Chu, W. Z. Lu. (2014). Research and application progress of near-infrared spectroscopy analytical technology in China in the past five years. Spectroscopy and Spectral Analysis.34(10):2595-2605. DOI: 10.1094/pd-70-924.
[24] C. C. Chang, C. J. Lin. (2011). LIBSVM. ACM Transactions on Intelligent Systems and Technology.2(3):1-27. DOI: 10.1094/pd-70-924.
[25] J. Perez-Mendoza, J. E. Throne, F. E. Dowell, J. E. Baker. et al.(2004). Chronological age-grading of three species of stored-product beetles by using near-infrared spectroscopy. Journal of Economic Entomology.97(3):1159-1167. DOI: 10.1094/pd-70-924.
[26] N. W. Schaad, R. D. Frederick. (2002). Real-time PCR and its application for rapid plant disease diagnostics. Canadian Journal of Plant Pathology.24(3):250-258. DOI: 10.1094/pd-70-924.
[27] J. G. Mcdonald, E. Wong, G. T. Kristiansson, G. P. White. et al.(1999). Direct amplification by PCR of DNA from ungerminated teliospores of species. Canadian Journal of Plant Pathology.21(1):78-80. DOI: 10.1094/pd-70-924.
[28] K. G. Savchenko, L. M. Carris, J. Demers, D. S. Manamgoda. et al.(2017). What causes flag smut of wheat?. Plant Pathology.66(7):1139-1148. DOI: 10.1094/pd-70-924.
[29] H. X. Yu, L. Gao, X. H. Kang, T. G. Liu. et al.(2016). Discrimination of teliospores in TCK and TFL with laser scanning confocal microscope. China Plant Protection.36(2):5-8. DOI: 10.1094/pd-70-924.
[30] S. Sankaran, A. Mishra, R. Ehsani, C. Davis. et al.(2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture.72(1):1-13. DOI: 10.1094/pd-70-924.
[31] Y. Q. Zhao, F. Qin, P. Cheng. (2015). Quantitative determination of germinability of f. sp. urediospores using near-infrared spectroscopy technology. Journal of Spectroscopy.2015-8. DOI: 10.1094/pd-70-924.
[32] G. T. Xu, H. F. Yuan, W. Z. Lu. (2000). Development of modern near-infrared spectroscopic techniques and its applications. Spectroscopy and Spectral Analysis.20(2):134-142. DOI: 10.1094/pd-70-924.
[33] J. Perez-Mendoza, J. E. Throne, E. B. Maghirang, F. E. Dowell. et al.(2005). Insect fragments in flour: relationship to lesser grain borer (Coleoptera: bostrichidae) infestation level in wheat and rapid detection using near-infrared spectroscopy. Journal of Economic Entomology.98(6):2282-2291. DOI: 10.1094/pd-70-924.
[34] N. Liu, H. A. Parra, A. Pustjens, K. Hettinga. et al.(2018). Evaluation of portable near-infrared spectroscopy for organic milk authentication. Talanta.184:128-135. DOI: 10.1094/pd-70-924.
[35] P. Cheng, X. L. Li, F. Qin. (2014). Effects of UV-B radiation on near-infrared spectroscopy and identification of f. sp.. Journal of Spectroscopy.2014-9. DOI: 10.1094/pd-70-924.
[36] H. Chen, Z. Lin, H. Wu, L. Wang. et al.(2015). Diagnosis of colorectal cancer by near-infrared optical fiber spectroscopy and random forest. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy.135:185-191. DOI: 10.1094/pd-70-924.
[37] G. Bakkeren, J. W. Kronstad, C. A. Levesque. (2000). Comparison of AFLP fingerprints and ITS sequences as phylogenetic markers in Ustilaginomycetes. Mycologia.92(3):510-521. DOI: 10.1094/pd-70-924.
[38] D. Wu, L. Feng, C. Q. Zhang, Y. He. et al.(2007). Early detection of gray mold (Cinerea) on eggplant leaves based on vis/near-infrared spectra. Journal of Infrared and Millimeter Waves.26(4):269-273. DOI: 10.1094/pd-70-924.
文献评价指标
浏览 5次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次