首页 » 文章 » 文章详细信息
Journal of Sensors Volume 2019 ,2019-07-21
Using Hampel Identifier to Eliminate Profile-Isolated Outliers in Laser Vision Measurement
Research Article
Zhibin Yao 1 , 2 , 3 Jiaquan Xie 1 , 2 , 4 Yaqin Tian 1 , 2 , 3 Qingxue Huang 1 , 2 , 4
Show affiliations
DOI:10.1155/2019/3823691
Received 2018-12-17, accepted for publication 2019-03-03, Published 2019-03-03
PDF
摘要

In this paper, the profile of the bar is detected by laser vision technology. During the detection process, obvious isolated outliers can be observed in the profile data; dimension parameter and profile-fitting accuracy are seriously affected by these outliers. In order to eliminate these outliers and improve the measurement accuracy, this paper uses Hampel identifier and moving mean identifier to identify isolated outliers. At the same time, the profile data is fitted, and the fitting results and fitting accuracy were analyzed and compared between the original data and the renovated data. The experiment proves that the outliers in the data must be identified and processed in the data measurement process. The Hampel identifier has better recognition effect, its algorithm is simple, efficient, and robust, and it can play an important role in the preprocessing of profile data based on structured light.

授权许可

Copyright © 2019 Zhibin Yao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhibin Yao.Collaborative Innovation Center of Taiyuan Heavy Machinery Equipment, Taiyuan 030024, China;Shanxi Provincial Key Laboratory of Metallurgical Device Design Theory and Technology, Taiyuan, 030024 Shanxi, China;College of Mechanical Engineering, Taiyuan University of Science and Technology, Shanxi, Taiyuan 030024, China, tyust.edu.cn.yzb@tyust.edu.cn

推荐引用方式

Zhibin Yao,Jiaquan Xie,Yaqin Tian,Qingxue Huang. Using Hampel Identifier to Eliminate Profile-Isolated Outliers in Laser Vision Measurement. Journal of Sensors ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] P. Mercorelli, A. Frick. (2007). Industrial applications using wavelet packets for gross error detection. Computational Intelligence in Information Assurance and Security.57. DOI: 10.1016/j.precisioneng.2017.06.017.
[2] L. Yin, R. Yang, M. Gabbouj, Y. Neuvo. et al.(1996). Weighted median filters: a tutorial. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing.43(3):157-192. DOI: 10.1016/j.precisioneng.2017.06.017.
[3] D. P. Allen, E. L. Stegemöller, C. Zadikoff, J. M. Rosenow. et al.(2010). Suppression of deep brain stimulation artifacts from the electroencephalogram by frequency-domain Hampel filtering. Clinical Neurophysiology.121(8):1227-1232. DOI: 10.1016/j.precisioneng.2017.06.017.
[4] F. R. Hampel. (1974). The influence curve and its role in robust estimation. Journal of the American Statistical Association.69(346):383-393. DOI: 10.1016/j.precisioneng.2017.06.017.
[5] R. K. Pearson, Y. Neuvo, J. Astola, M. Gabbouj. et al.(2016). Generalized hampel filters. EURASIP Journal on Advances in Signal Processing.2016(1). DOI: 10.1016/j.precisioneng.2017.06.017.
[6] M. Gabbouj, P. T. Yu, E. J. Coyle. (1992). Convergence behavior and root signal sets of stack filters. Circuits Systems and Signal Processing.11(1):171-193. DOI: 10.1016/j.precisioneng.2017.06.017.
[7] D. M. Hawkins. (1980). Identification of Outliers. DOI: 10.1016/j.precisioneng.2017.06.017.
[8] F. R. Hampel. (1971). A general qualitative definition of robustness. The Annals of Mathematical Statistics.42(6):1887-1896. DOI: 10.1016/j.precisioneng.2017.06.017.
[9] R. D. Martin, D. J. Thomson. (1982). Robust-resistant spectrum estimation. Proceedings of the IEEE.70(9):1097-1115. DOI: 10.1016/j.precisioneng.2017.06.017.
[10] R. Usamentiaga, J. Molleda, D. F. García. (2012). Fast and robust laser stripe extraction for 3D reconstruction in industrial environments. Machine Vision and Applications.23(1):179-196. DOI: 10.1016/j.precisioneng.2017.06.017.
[11] J. P. Bentley. (2005). Principles of Measurement Systems. DOI: 10.1016/j.precisioneng.2017.06.017.
[12] L. Davies, U. Gather. (1993). The identification of multiple outliers. Publications of the American Statistical Association.88(423):782. DOI: 10.1016/j.precisioneng.2017.06.017.
[13] R. K. Pearson, Y. Neuvo, J. Astola, M. Gabbouj. et al.The class of generalized hampel filters. :2501-2505. DOI: 10.1016/j.precisioneng.2017.06.017.
[14] J. Astola, P. Kuosmanen. (1997). Fundamentals of Nonlinear Digital Filtering. DOI: 10.1016/j.precisioneng.2017.06.017.
[15] R. K. Pearson. (2002). Outliers in process modeling and identification. IEEE Transactions on Control Systems Technology.10(1):55-63. DOI: 10.1016/j.precisioneng.2017.06.017.
[16] H. Liu, S. Shah, W. Jiang. (2004). On-line outlier detection and data cleaning. Computers & Chemical Engineering.28(9):1635-1647. DOI: 10.1016/j.precisioneng.2017.06.017.
[17] D. P. Allen. (2009). A frequency domain Hampel filter for blind rejection of sinusoidal interference from electromyograms. Journal of Neuroscience Methods.177(2):303-310. DOI: 10.1016/j.precisioneng.2017.06.017.
[18] S. Martínez, E. Cuesta, J. Barreiro, B. Álvarez. et al.(2010). Analysis of laser scanning and strategies for dimensional and geometrical control. International Journal of Advanced Manufacturing Technology.46(5-8):621-629. DOI: 10.1016/j.precisioneng.2017.06.017.
[19] S. Egorov, A. Kapitanov, D. Loktev. (2017). Turbine blades profile and surface roughness measurement. Procedia Engineering.206:1476-1481. DOI: 10.1016/j.precisioneng.2017.06.017.
[20] C. Aggarwal. (2015). Outlier Analysis. DOI: 10.1016/j.precisioneng.2017.06.017.
[21] M. Rahayem, N. Werghi, J. Kjellander. (2012). Best ellipse and cylinder parameters estimation from laser profile scan sections. Optics and Lasers in Engineering.50(9):1242-1259. DOI: 10.1016/j.precisioneng.2017.06.017.
[22] C. Munzinger, G. Lanza, D. Ruch, J. Elser. et al.(2010). Component-specific scale for inline quality assurance of spatially curved extrusion profiles. Production Engineering.4(2-3):193-201. DOI: 10.1016/j.precisioneng.2017.06.017.
[23] Z. Gan, Q. Tang. (2011). Visual Sensing and Its Applications. DOI: 10.1016/j.precisioneng.2017.06.017.
[24] Z. Yue-Lan, S. U. Wu-Jin, Nan-ning Blood Center. (2015). The application of Hampel identifier in internal quality control about ELISA. DOI: 10.1016/j.precisioneng.2017.06.017.
[25] Y. C. Zhang, J. X. Han, X. B. Fu, H. B. Lin. et al.(2014). An online measurement method based on line laser scanning for large forgings. The International Journal of Advanced Manufacturing Technology.70(1-4):439-448. DOI: 10.1016/j.precisioneng.2017.06.017.
[26] W. Liu, K. Fan, P. Hu, Y. Hu. et al.(2018). A parallel error separation method for the on-line measurement and reconstruction of cylindrical profiles. Precision Engineering.51:1-9. DOI: 10.1016/j.precisioneng.2017.06.017.
[27] Y. Zhao, B. Lehman, R. Ball, J. Mosesian. et al.Outlier detection rules for fault detection in solar photovoltaic arrays. . DOI: 10.1016/j.precisioneng.2017.06.017.
文献评价指标
浏览 20次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次