首页 » 文章 » 文章详细信息
Journal of Nanomaterials Volume 2019 ,2019-07-22
Swelling Resistance and Water-Induced Shape Memory Performances of Sisal Cellulose Nanofibers/Polyethylene Glycol/Citric Acid Nanocellulose Papers
Research Article
Zuocai Zhang 1 Yuqi Li 1 Laifu Song 1 Li Ren 1 Xu Xu 1 , 2 Shaorong Lu 1
Show affiliations
DOI:10.1155/2019/4304532
Received 2019-03-04, accepted for publication 2019-05-23, Published 2019-05-23
PDF
摘要

In this work, a kind of nanocomposite paper was obtained by evaporation-induced self-assembly of a mixture of sisal cellulose nanofibers (CNF) and polyethylene glycol (PEG) as the matrix and citric acid (CA) as a cross-linking agent. The CNF/PEG/CA paper exhibited good water swelling resistance which could be controlled by changing the concentration of CA. In addition, this nanocomposite paper exhibited good mechanical properties and water-induced shape memory performance. In particular, when the dosage of CA was 30 wt.%, the tensile strength and the tensile modulus of the CNF/PEG/CA paper after swelling were 25.2 MPa and 813.0 MPa, respectively. Further, this nanocomposite showed great potential for water-induced shape memory materials with fast response speed. The shape recovery rate (Rr) of the CNF/PEG/CA paper reached 90.2% with 30 wt.% CA after being immersed in water for 11 s. It is anticipated that our current work can be used to exploit more efficient methods to overcome the poor water swelling resistance of the cellulose-based shape memory materials.

授权许可

Copyright © 2019 Zuocai Zhang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Yuqi Li.Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China, glut.edu.cn.liyuqi@glut.edu.cn
2. Shaorong Lu.Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, School of Material Science and Engineering, Guilin University of Technology, Guilin 541004, China, glut.edu.cn.lushaor@163.com

推荐引用方式

Zuocai Zhang,Yuqi Li,Laifu Song,Li Ren,Xu Xu,Shaorong Lu. Swelling Resistance and Water-Induced Shape Memory Performances of Sisal Cellulose Nanofibers/Polyethylene Glycol/Citric Acid Nanocellulose Papers. Journal of Nanomaterials ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. Cheng, Y. Wen, L. Wang, X. An. et al.(2015). Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity. Carbohydrate Polymers.123(1):157-163. DOI: 10.1002/marc.201700149.
[2] F. Zhuo, X. Liu, Q. Gao, Y. Wang. et al.(2017). Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering. Materials Science & Engineering. C, Materials for Biological Applications.81(21):1-7. DOI: 10.1002/marc.201700149.
[3] Y. Liu, Y. Li, G. Yang, X. Zheng. et al.(2015). Multi-stimulus-responsive shape-memory polymer nanocomposite network cross-linked by cellulose nanocrystals. ACS Applied Materials & Interfaces.7(7):4118-4126. DOI: 10.1002/marc.201700149.
[4] Y. Liu, Y. Li, H. Chen, G. Yang. et al.(2014). Water-induced shape-memory poly(d, l-lactide)/microcrystalline cellulose composites. Carbohydrate Polymers.104(1):101-108. DOI: 10.1002/marc.201700149.
[5] H. Du, J. Zhang. (2010). Solvent induced shape recovery of shape memory polymer based on chemically cross-linked poly(vinyl alcohol). Soft Matter.6(14):3370-3376. DOI: 10.1002/marc.201700149.
[6] I. Dueramae, M. Nishida, T. Nakaji-Hirabayashi, K. Matsumura. et al.(2016). Biodegradable shape memory polymers functionalized with anti-biofouling interpenetrating polymer networks. Journal of Materials Chemistry B.4(32):5394-5404. DOI: 10.1002/marc.201700149.
[7] S. Fujisawa, T. Saito, S. Kimura, T. Iwata. et al.(2013). Surface engineering of ultrafine cellulose nanofibrils toward polymer nanocomposite materials. Biomacromolecules.14(5):1541-1546. DOI: 10.1002/marc.201700149.
[8] P. Yu, H. He, A. Dufresne. (2017). A novel interpenetrating polymer network of natural rubber/regenerated cellulose made by simple co-precipitation. Materials Letters.205(1):202-205. DOI: 10.1002/marc.201700149.
[9] R. Zarnetta, R. Takahashi, M. L. Young, A. Savan. et al.(2010). Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Advanced Functional Materials.20(12):1917-1923. DOI: 10.1002/marc.201700149.
[10] Y. Li, H. Chen, D. Liu, W. Wang. et al.(2015). pH-responsive shape memory poly(ethylene glycol)–poly(-caprolactone)-based polyurethane/cellulose nanocrystals nanocomposite. ACS Applied Materials & Interfaces.7(23):12988-12999. DOI: 10.1002/marc.201700149.
[11] Y. Fang, Y. Ni, S. Y. Leo, B. Wang. et al.(2015). Direct writing of three-dimensional macroporous photonic crystals on pressure-responsive shape memory polymers. ACS Applied Materials & Interfaces.7(42):23650-23659. DOI: 10.1002/marc.201700149.
[12] A. Kausar. (2016). Nanodiamond tethered epoxy/polyurethane interpenetrating network nanocomposite: physical properties and thermoresponsive shape-memory behavior. International Journal of Polymer Analysis and Characterization.21(4):348-358. DOI: 10.1002/marc.201700149.
[13] C. H. Lu, W. Guo, Y. Hu, X. J. Qi. et al.(2015). Multitriggered shape-memory acrylamide–DNA hydrogels. Journal of the American Chemical Society.137(50):15723-15731. DOI: 10.1002/marc.201700149.
[14] E. A. Hassan, S. M. Fadel, M. L. Hassan. (2018). Influence of TEMPO-oxidized NFC on the mechanical, barrier properties and nisin release of hydroxypropyl methylcellulose bioactive films. International Journal of Biological Macromolecules.113(1):616-622. DOI: 10.1002/marc.201700149.
[15] X. Li, T. Liu, Y. Wang, Y. Pan. et al.(2014). Shape memory behavior and mechanism of poly(methyl methacrylate) polymer networks in the presence of star poly(ethylene glycol). RSC Advances.4(37):19273-19282. DOI: 10.1002/marc.201700149.
[16] L. Dai, C. L. Si. (2017). Cellulose--poly(methyl methacrylate) nanoparticles with high biocompatibility for hydrophobic anti-cancer drug delivery. Materials Letters.207:213-216. DOI: 10.1002/marc.201700149.
[17] M. L. Hassan, J. Bras, E. A. Hassan, S. M. Fadel. et al.(2012). Polycaprolactone/modified bagasse whisker nanocomposites with improved moisture-barrier and biodegradability properties. Journal of Applied Polymer Science.125:E10-E19. DOI: 10.1002/marc.201700149.
[18] W. Wang, H. Lu, Y. Liu, J. Leng. et al.(2014). Sodium dodecyl sulfate/epoxy composite: water-induced shape memory effect and its mechanism. Journal of Materials Chemistry A.2(15):5441-5449. DOI: 10.1002/marc.201700149.
[19] J. J. M. Halls, C. A. Walsh, N. C. Greenham, E. A. Marseglia. et al.(1995). Efficient photodiodes from interpenetrating polymer networks. Nature.376(6540):498-500. DOI: 10.1002/marc.201700149.
[20] J. S. Yeo, S. H. Hwang. (2017). The effect of dense polymer brush on the microfibrillated cellulose for the mechanical properties of poly(-caprolactone) biocomposites. International Journal of Adhesion and Adhesives.78:89-94. DOI: 10.1002/marc.201700149.
[21] M. Morits, J. R. McKee, J. Majoinen, J. M. Malho. et al.(2017). Polymer brushes on cellulose nanofibers: modification, SI-ATRP, and unexpected degradation processes. ACS Sustainable Chemistry & Engineering.5(9):7642-7650. DOI: 10.1002/marc.201700149.
[22] L. Song, Y. Li, Z. Xiong, L. Pan. et al.(2018). Water-induced shape memory effect of nanocellulose papers from sisal cellulose nanofibers with graphene oxide. Carbohydrate Polymers.179(1):110-117. DOI: 10.1002/marc.201700149.
[23] M. Kaushik, K. Basu, C. Benoit, C. M. Cirtiu. et al.(2015). Cellulose nanocrystals as chiral inducers: enantioselective catalysis and transmission electron microscopy 3D characterization. Journal of the American Chemical Society.137(19):6124-6127. DOI: 10.1002/marc.201700149.
[24] R. E. Abou-Zeid, E. A. Hassan, F. Bettaieb, R. Khiari. et al.(2015). Use of cellulose and oxidized cellulose nanocrystals from olive stones in chitosan bionanocomposites. Journal of Nanomaterials.2015-11. DOI: 10.1002/marc.201700149.
[25] Y. Feng, H. Zhao, L. Jiao, J. Lu. et al.(2012). Synthesis and characterization of biodegradable, amorphous, soft IPNs with shape-memory effect. Polymers for Advanced Technologies.23(3):382-388. DOI: 10.1002/marc.201700149.
[26] D. Ratna, J. Karger-Kocsis. (2011). Shape memory polymer system of semi-interpenetrating network structure composed of crosslinked poly (methyl methacrylate) and poly (ethylene oxide). Polymer.52(4):1063-1070. DOI: 10.1002/marc.201700149.
[27] N. Li, G. Chen, W. Chen, J. Huang. et al.(2017). Multivalent cations-triggered rapid shape memory sodium carboxymethyl cellulose/polyacrylamide hydrogels with tunable mechanical strength. Carbohydrate Polymers.178:159-165. DOI: 10.1002/marc.201700149.
[28] L. N. Woodard, V. M. Page, K. T. Kmetz, M. A. Grunlan. et al.(2016). PCL-PLLA semi-IPN shape memory polymers (SMPs): degradation and mechanical properties. Macromolecular Rapid Communications.37(23):1972-1977. DOI: 10.1002/marc.201700149.
[29] Z. C. Jiang, Y. Y. Xiao, Y. Kang, B. J. Li. et al.(2017). Semi-IPNs with moisture-triggered shape memory and self-healing properties. Macromolecular Rapid Communications.38(14, article 1700149). DOI: 10.1002/marc.201700149.
[30] W. S. Abo-Elseoud, M. L. Hassan, M. W. Sabaa, M. Basha. et al.(2018). Chitosan nanoparticles /cellulose nanocrystals nanocomposites as a carrier system for the controlled release of repaglinide. International Journal of Biological Macromolecules.111(20):604-613. DOI: 10.1002/marc.201700149.
[31] L. Dong, C. Hu, L. Song, X. Huang. et al.(2016). A large-area, flexible, and flame-retardant graphene paper. Advanced Functional Materials.26(9):1470-1476. DOI: 10.1002/marc.201700149.
[32] L. Zhang, H. Jiao, H. Jiu, J. Chang. et al.(2016). Thermal mechanical and electrical properties of polyurethane/(3-aminopropyl) triethoxysilane functionalized graphene/epoxy resin interpenetrating shape memory polymer composites. Composites: Part A.90(1):286-295. DOI: 10.1002/marc.201700149.
[33] P. de Cuadro, T. Belt, K. S. Kontturi, M. Reza. et al.(2015). Cross-linking of cellulose and poly(ethylene glycol) with citric acid. Reactive & Functional Polymers.90(3):21-24. DOI: 10.1002/marc.201700149.
[34] Y. Fang, Y. Ni, B. Choi, S. Y. Leo. et al.(2015). Chromogenic photonic crystals enabled by novel vapor-responsive shape-memory polymers. Advanced Materials.27(24):3696-3704. DOI: 10.1002/marc.201700149.
文献评价指标
浏览 31次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次