首页 » 文章 » 文章详细信息
GEOFLUIDS Volume 2019 ,2019-07-24
Fault “Corrosion” by Fluid Injection: A Potential Cause of the November 2017 MW 5.5 Korean Earthquake
Research Article
Rob Westaway 1 Neil M. Burnside 1
Show affiliations
DOI:10.1155/2019/1280721
Received 2019-01-10, accepted for publication 2019-06-08, Published 2019-06-08
PDF
摘要

The November 2017 MW 5.5 Pohang earthquake is one of the largest and most damaging seismic events to have occurred in the Korean peninsula over the last century. Its close proximity to an Enhanced Geothermal System (EGS) site, where hydraulic injection into granite had taken place over the previous two years, has raised the possibility that it was anthropogenic; if so, it was by far the largest earthquake caused by any EGS project worldwide. However, a potential argument that this earthquake was independent of anthropogenic activity considers the delay of two or three months before its occurrence, following the most recent injection into each of the wells. A better understanding of the physical and chemical processes that occur following fluid injection into granite is thus warranted. We show that hydrochemical changes occurring while surface water, injected into granite, reequilibrates chemically with its subsurface environment, can account for time delays for earthquake occurrence of such duration, provided the seismogenic fault was already critically stressed, or very close to the condition for slip. This candidate causal mechanism counters the potential argument that the time delay militates against an anthropogenic cause of the Pohang earthquake and can account for its relatively large magnitude as a consequence of a relatively small-volume injection. The resulting analysis places bounds on combinations of physical and chemical properties of rocks, injected volume, and potential postinjection time delays for significant anthropogenic seismicity during future EGS projects in granite.

授权许可

Copyright © 2019 Rob Westaway and Neil M. Burnside. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Rob Westaway.James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, UK, gla.ac.uk.robert.westaway@gla.ac.uk

推荐引用方式

Rob Westaway,Neil M. Burnside. Fault “Corrosion” by Fluid Injection: A Potential Cause of the November 2017 MW 5.5 Korean Earthquake. GEOFLUIDS ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] P. L. Hancock, T. Engelder. (1989). Neotectonic joints. Geological Society of America Bulletin.101(10):1197-1208. DOI: 10.1785/0220150067.
[2] H. Yasuhara, C. Marone, D. Elsworth. (2005). Fault zone restrengthening and frictional healing: the role of pressure solution. Journal of Geophysical Research.110(B6, article B06310). DOI: 10.1785/0220150067.
[3] I. Metcalfe. (2006). Palaeozoic and Mesozoic tectonic evolution and palaeogeography of East Asian crustal fragments: the Korean Peninsula in context. Gondwana Research.9(1-2):24-46. DOI: 10.1785/0220150067.
[4] S.-G. Lee, T.-K. Kim, J.-S. Lee, T. J. Lee. et al.(2008). Geochemical implication of Sr/Sr ratio of high-temperature deep groundwater in a fractured granite aquifer. Geochemical Journal.42(5):429-441. DOI: 10.1785/0220150067.
[5] Y. K. Sohn, C. W. Rhee, H. Shon. (2001). Revised stratigraphy and reinterpretation of the Miocene Pohang basinfill, SE Korea: sequence development in response to tectonism and eustasy in a back-arc basin margin. Sedimentary Geology.143(3-4):265-285. DOI: 10.1785/0220150067.
[6] F. Grigoli, S. Cesca, A. P. Rinaldi, A. Manconi. et al.(2018). The November 2017Mw5.5 Pohang earthquake: A possible case of induced seismicity in South Korea. Science.360(6392):1003-1006. DOI: 10.1785/0220150067.
[7] K.-K. Lee, I.-W. Yeo, J.-Y. Lee, T.-S. Kang. et al.Summary report of the Korean Government Commission on relations between the 2017 Pohang earthquake and the EGS project. :205. DOI: 10.1785/0220150067.
[8] Y. Lee, S. Park, J. Kim, H. C. Kim. et al.(2010). Geothermal resource assessment in Korea. Renewable & Sustainable Energy Reviews.14(8):2392-2400. DOI: 10.1785/0220150067.
[9] S. K. Chough, S.-T. Kwon, J.-H. Ree, D. K. Choi. et al.(2000). Tectonic and sedimentary evolution of the Korean peninsula: a review and new view. Earth-Science Reviews.52(1-3):175-235. DOI: 10.1785/0220150067.
[10] M. Zastrow. (2018). South Korea’s most-destructive quake probably triggered by geothermal plant. Nature. DOI: 10.1785/0220150067.
[11] S. K. Chough, Y. K. Sohn. (2010). Tectonic and sedimentary evolution of a Cretaceous continental arc–backarc system in the Korean peninsula: new view. Earth-Science Reviews.101(3-4):225-249. DOI: 10.1785/0220150067.
[12] J. F. Labuz, A. Zang. (2012). Mohr–Coulomb failure criterion. Rock Mechanics and Rock Engineering.45(6):975-979. DOI: 10.1785/0220150067.
[13] R. J. H. Jolly, D. J. Sanderson. (1997). A Mohr circle construction for the opening of a pre-existing fracture. Journal of Structural Geology.19(6):887-892. DOI: 10.1785/0220150067.
[14] K.-H. Kim, J. H. Ree, Y. H. Kim, S. Kim. et al.(2018). Assessing whether the 2017Mw5.4 Pohang earthquake in South Korea was an induced event. Science.360(6392):1007-1009. DOI: 10.1785/0220150067.
[15] H. C. Kim, Y. Lee. (2007). Heat flow in the Republic of Korea. Journal of Geophysical Research.112(B5, article B05413). DOI: 10.1785/0220150067.
[16] H. S. Carslaw, J. C. Jaeger. (1959). Conduction of Heat in Solids.510. DOI: 10.1785/0220150067.
[17] Lenntech 2018. (2018). Major Ion Composition of Seawater. DOI: 10.1785/0220150067.
[18] S. Ide, G. C. Beroza. (2001). Does apparent stress vary with earthquake size?. Geophysical Research Letters.28(17):3349-3352. DOI: 10.1785/0220150067.
[19] T. C. Hanks, H. Kanamori. (1979). A moment magnitude scale. Journal of Geophysical Research.84(B5):2348-2350. DOI: 10.1785/0220150067.
[20] K. Yi, C.-S. Cheong, J. Kim, N. Kim. et al.(2012). Late Paleozoic to early Mesozoic arc-related magmatism in southeastern Korea: SHRIMP zircon geochronology and geochemistry. Lithos.153:129-141. DOI: 10.1785/0220150067.
[21] J. Lee, T.-K. Hong, C. Chang. (2017). Crustal stress field perturbations in the continental margin around the Korean peninsula and Japanese islands. Tectonophysics.718:140-149. DOI: 10.1785/0220150067.
[22] Y.-J. Jwa. Mesozoic granites and associated mineralization in South Korea. :81-83. DOI: 10.1785/0220150067.
[23] V. I. Keilis-Borok. (1959). On estimation of the displacement in an earthquake source and of source dimensions. Annali di Geofisica.12:205-214. DOI: 10.1785/0220150067.
[24] S. A. Miller. (2013). The role of fluids in tectonic and earthquake processes. Advances in Geophysics.54:1-46. DOI: 10.1785/0220150067.
[25] M. Zastrow. (2019). South Korea accepts geothermal plant probably caused destructive quake. Nature. DOI: 10.1785/0220150067.
[26] A. McGarr. (2014). Maximum magnitude earthquakes induced by fluid injection. Journal of Geophysical Research, Solid Earth.119(2):1008-1019. DOI: 10.1785/0220150067.
[27] H. Kim, L. Xie, K.-B. Min, S. Bae. et al.(2017). Integrated in situ stress estimation by hydraulic fracturing, borehole observations and numerical analysis at the EXP-1 borehole in Pohang, Korea. Rock Mechanics and Rock Engineering.50(12):3141-3155. DOI: 10.1785/0220150067.
[28] T.-H. Lee, K. Yi, C.-S. Cheong, Y.-J. Jeong. et al.(2014). SHRIMP U-Pb zircon geochronology and geochemistry of drill cores from the Pohang Basin. The Journal of the Petrological Society of Korea.23(3):167-185. DOI: 10.1785/0220150067.
[29] C. Chang, J. B. Lee, T.-S. Kang. (2010). Interaction between regional stress state and faults: complementary analysis of borehole in situ stress and earthquake focal mechanism in southeastern Korea. Tectonophysics.485(1-4):164-177. DOI: 10.1785/0220150067.
[30] Stanford University 2018. (2018). Mineral makeup of seawater. DOI: 10.1785/0220150067.
[31] Y. Song, S. K. Lee, H. C. Kim, W.-S. Kee. et al.(2003). Case study on a low-enthalpy geothermal exploration in Pohang area, Korea. Geosystem Engineering.6(2):46-53. DOI: 10.1785/0220150067.
[32] C. W. Oh. (2006). A new concept on tectonic correlation between Korea, China and Japan: histories from the late Proterozoic to Cretaceous. Gondwana Research.9(1-2):47-61. DOI: 10.1785/0220150067.
[33] R. Lee, C. Chang, T.-K. Hong, J. Lee. et al.(2016). A comparison between deep and shallow stress fields in Korea using earthquake focal mechanism inversions and hydraulic fracturing stress measurements. Geophysical Research Abstracts.18:EGU2016-11721-3. DOI: 10.1785/0220150067.
[34] J. F. Archard. (1957). Elastic deformation and the laws of friction. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.243(1233):190-205. DOI: 10.1785/0220150067.
[35] E. K. Mitchell, Y. Fialko, K. M. Brown. (2013). Temperature dependence of frictional healing of Westerly granite: experimental observations and numerical simulations. Geochemistry, Geophysics, Geosystems.14(3):567-582. DOI: 10.1785/0220150067.
[36] B. E. Shaw. (2009). Constant stress drop from small to great earthquakes in magnitude-area scaling. Bulletin of the Seismological Society of America.99(2A):871-875. DOI: 10.1785/0220150067.
[37] T. J. Lee, Y. Song, T. Uchida. (2005). Two-dimensional interpretation of far-remote reference magnetotelluric data for geothermal application. Geophysical Exploration.8:145-155. DOI: 10.1785/0220150067.
[38] T. J. Lee, Y. Song, D.-W. Park, J. Jeon. et al.Three dimensional geological model of Pohang EGS pilot site, Korea. .19(25):6. DOI: 10.1785/0220150067.
[39] Y. Park, J.-H. Ree, S.-H. Yoo. (2006). Fault slip analysis of Quaternary faults in southeastern Korea. Gondwana Research.9(1-2):118-125. DOI: 10.1785/0220150067.
[40] H. Hofmann, G. Zimmermann, A. Zang, K.-B. Min. et al.(2018). Cyclic soft stimulation (CSS): a new fluid injection protocol and traffic light system to mitigate seismic risks of hydraulic stimulation treatments. Geothermal Energy.6(1). DOI: 10.1785/0220150067.
[41] Y. H. Kim, J. Rhie, T.-S. Kang, K.-H. Kim. et al.(2016). The 12 September 2016 Gyeongju earthquakes: 1. Observation and remaining questions. Geosciences Journal.20(6):747-752. DOI: 10.1785/0220150067.
[42] T. J. Lee, Y. Song, W. S. Yoon, K.-Y. Kim. et al.The first enhanced geothermal system project in Korea. .7:9. DOI: 10.1785/0220150067.
[43] K. Lee, Y. Woo-Sun. (2006). Historical seismicity of Korea. Bulletin of the Seismological Society of America.96(3):846-855. DOI: 10.1785/0220150067.
[44] M. L. Zoback, M. D. Zoback. (2007). Lithosphere stress and deformation. Treatise on Geophysics.6:253-273. DOI: 10.1785/0220150067.
[45] C. A. Barton, M. D. Zoback, D. Moos. (1995). Fluid flow along potentially active faults in crystalline rock. Geology.23(8):683-686. DOI: 10.1785/0220150067.
[46] J. Townend, M. D. Zoback. (2000). How faulting keeps the crust strong. Geology.28(5):399. DOI: 10.1785/0220150067.
[47] K.-S. Yoon, J.-S. Jeon, H.-K. Hong, H.-G. Kim. et al.Deep drilling experience for Pohang enhanced geothermal project in Korea. .19. DOI: 10.1785/0220150067.
[48] S. Park, L. Xie, K.-I. Kim, S. Kwon. et al.(2017). First hydraulic stimulation in fractured geothermal reservoir in Pohang PX-2 well. Procedia Engineering.191:829-837. DOI: 10.1785/0220150067.
[49] H. Hofmann, G. Zimmermann, M. Farkas, E. Huenges. et al.(2019). First field application of cyclic soft stimulation at the Pohang enhanced geothermal system site in Korea. Geophysical Journal International.217(2):926-949. DOI: 10.1785/0220150067.
[50] T. C. Ekneligoda, K.-B. Min. (2014). Determination of optimum parameters of doublet system in a horizontally fractured geothermal reservoir. Renewable Energy.65:152-160. DOI: 10.1785/0220150067.
[51] L. Xie, K.-B. Min. (2016). Initiation and propagation of fracture shearing during hydraulic stimulation in enhanced geothermal system. Geothermics.59:107-120. DOI: 10.1785/0220150067.
[52] J.-H. Choi, K. Ko, Y. S. Gihm, C. S. Cho. et al.(2019). Surface deformations and rupture processes associated with the 2017 M 5.4 Pohang, Korea, earthquake. Bulletin of the Seismological Society of America.109(2):756-769. DOI: 10.1785/0220150067.
[53] R. J. Pine, A. S. Batchelor. (1984). Downward migration of shearing in jointed rock during hydraulic injections. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.21(5):249-263. DOI: 10.1785/0220150067.
[54] S.-G. Lee, T.-K. Kim, T. J. Lee. (2011). Strontium isotope geochemistry and its geochemical implication from hot spring waters in South Korea. Journal of Volcanology and Geothermal Research.208(1-2):12-22. DOI: 10.1785/0220150067.
[55] F. M. Chester, J. M. Logan. (1987). Composite planar fabric of gouge from the Punchbowl fault, California. Journal of Structural Geology.9(5-6):621-IN6. DOI: 10.1785/0220150067.
[56] J. S. Caine, J. P. Evans, C. B. Forster. (1996). Fault zone architecture and permeability structure. Geology.24(11):1025-1028. DOI: 10.1785/0220150067.
[57] J. L. Rubinstein, A. B. Mahani. (2015). Myths and facts on wastewater injection, hydraulic fracturing, enhanced oil recovery, and induced seismicity. Seismological Research Letters.86(4):1060-1067. DOI: 10.1785/0220150067.
[58] E. Trutnevyte, O. Ejderyan. (2017). Managing geoenergy-induced seismicity with society. Journal of Risk Research.21(10):1287-1294. DOI: 10.1785/0220150067.
[59] W. F. Brace, D. L. Kohlstedt. (1980). Limits on lithospheric stress imposed by laboratory experiments. Journal of Geophysical Research.85(B11):6248-6252. DOI: 10.1785/0220150067.
[60] J. D. Rimstidt, H. L. Barnes. (1980). The kinetics of silica-water reactions. Geochimica et Cosmochimica Acta.44(11):1683-1699. DOI: 10.1785/0220150067.
[61] R. Westaway. (2017). Integrating induced seismicity with rock mechanics: a conceptual model for the 2011 Preese Hall fracture development and induced seismicity. Geological Society, London, Special Publications.454(1):327-359. DOI: 10.1785/0220150067.
[62] R. Davies, G. Foulger, A. Bindley, P. Styles. et al.(2013). Induced seismicity and hydraulic fracturing for the recovery of hydrocarbons. Marine and Petroleum Geology.45:171-185. DOI: 10.1785/0220150067.
[63] S. D. Davis, C. Frohlich. (1993). Did (or will) fluid injection cause earthquakes? - criteria for a rational assessment. Seismological Research Letters.64(3-4):207-224. DOI: 10.1785/0220150067.
[64] J.-H. Choi, P. Edwards, K. Ko, Y.-S. Kim. et al.(2016). Definition and classification of fault damage zones: a review and a new methodological approach. Earth-Science Reviews.152:70-87. DOI: 10.1785/0220150067.
[65] S.-G. Choi, I.-C. Ryu, S. J. Pak, S.-M. Wee. et al.(2005). Cretaceous epithermal gold–silver mineralization and geodynamic environment, Korea. Ore Geology Reviews.26(1-2):115-135. DOI: 10.1785/0220150067.
[66] C. D. Klose. (2007). Mine water discharge and flooding: a cause of severe earthquakes. Mine Water and the Environment.26(3):172-180. DOI: 10.1785/0220150067.
[67] L. Jolivet, K. Tamaki. Neogene kinematics in the Japan Sea region and volcanic activity of the Northeast Japan arc. .127/128:1311-1331. DOI: 10.1785/0220150067.
[68] M. Son, C. W. Song, M.-C. Kim, Y. Cheon. et al.(2015). Miocene tectonic evolution of the basins and fault systems, SE Korea: dextral simple shear during the East Sea (Sea of Japan) opening. Journal of the Geological Society, London.172(5):664-680. DOI: 10.1785/0220150067.
[69] N. M. Burnside, D. Banks, A. J. Boyce. (2016). Sustainability of thermal energy production at the flooded mine workings of the former Caphouse Colliery, Yorkshire, United Kingdom. International Journal of Coal Geology.164:85-91. DOI: 10.1785/0220150067.
[70] E. M. Anderson. (1951). The dynamics of faulting and dyke formation with applications to Britain. DOI: 10.1785/0220150067.
[71] C. R. German, W. E. Seyfried. (2014). Hydrothermal processes. Treatise on Geochemistry:191-233. DOI: 10.1785/0220150067.
[72] Z. K. Shipton, P. A. Cowie. (2003). A conceptual model for the origin of fault damage zone structures in high-porosity sandstone. Journal of Structural Geology.25(3):333-344. DOI: 10.1785/0220150067.
[73] D. L. Parkhurst, C. A. J. Appelo. (2013). Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. DOI: 10.1785/0220150067.
[74] D. R. Faulkner, A. C. Lewis, E. H. Rutter. (2003). On the internal structure and mechanics of large strike-slip fault zones: field observations of the Carboneras fault in southeastern Spain. Tectonophysics.367(3-4):235-251. DOI: 10.1785/0220150067.
[75] P. Segall, J.-R. Grasso, A. Mossop. (1994). Poroelastic stressing and induced seismicity near the Lacq gas field, southwestern France. Journal of Geophysical Research.99(B8):15423-15438. DOI: 10.1785/0220150067.
[76] P. Segall. (1989). Earthquakes triggered by fluid extraction. Geology.17(10):942-946. DOI: 10.1785/0220150067.
[77] Y.-S. Kim, D. C. P. Peacock, D. J. Sanderson. (2004). Fault damage zones. Journal of Structural Geology.26(3):503-517. DOI: 10.1785/0220150067.
[78] J. K. Costain. (2017). Groundwater recharge as the trigger of naturally occurring intraplate earthquakes. Geological Society, London, Special Publications.432(1):91-118. DOI: 10.1785/0220150067.
[79] B.-H. Hwang, J.-D. Lee, K. Yang, M. McWilliams. et al.(2007). Cenozoic strike-slip displacement along the Yangsan fault, southeast Korean peninsula. International Geology Review.49(8):768-775. DOI: 10.1785/0220150067.
[80] P.-Y. Choi. (2006). ‘Singwang strike-slip duplex’ around the Pohang Basin, SE Korea: its structural evolution and role in opening and fill of the Miocene basin. Geosciences Journal.10(2):145-157. DOI: 10.1785/0220150067.
[81] J. B. Kyung. (2003). Paleoseismology of the Yangsan fault, southeastern part of the Korean peninsula. Annals of Geophysics.46:983-996. DOI: 10.1785/0220150067.
[82] S. Wiemer, T. Kraft, D. Landtwing. (2014). Seismic risk. Energy from the Earth: Deep Geothermal as a Resource for the Future? TA Swiss Geothermal Project Final Report. DOI: 10.1785/0220150067.
[83] S. Gudbrandsson, D. Wolff-Boenisch, S. R. Gislason, E. H. Oelkers. et al.(2014). Experimental determination of plagioclase dissolution rates as a function of its composition and pH at 22 °C. Geochimica et Cosmochimica Acta.139:154-172. DOI: 10.1785/0220150067.
[84] M. H. P. Bott. (1959). The mechanics of oblique slip faulting. Geological Magazine.96(2):109-117. DOI: 10.1785/0220150067.
[85] S. J. Martel, W. A. Boger. (1998). Geometry and mechanics of secondary fracturing around small three-dimensional faults in granitic rock. Journal of Geophysical Research.103(B9):21299-21314. DOI: 10.1785/0220150067.
[86] B. K. Kim. (1984). Cenozoic biostratigraphy of South Korea. Palaeogeography, Palaeoclimatology, Palaeoecology.46(1-3):85-96. DOI: 10.1785/0220150067.
[87] J.-C. Park, W. Kim, T. W. Chung, C.-E. Baag. et al.(2007). Focal mechanisms of recent earthquakes in the southern Korean peninsula. Geophysical Journal International.169(3):1103-1114. DOI: 10.1785/0220150067.
[88] R. Westaway. (2016). The importance of characterizing uncertainty in controversial geoscience applications: induced seismicity associated with hydraulic fracturing for shale gas in northwest England. Proceedings of the Geologists' Association.127(1):1-17. DOI: 10.1785/0220150067.
[89] H. S. Lim, Y. I. Lee, K. D. Min. (2003). Thermal history of the Cretaceous Sindong Group, Gyeongsang Basin, Korea, based on fission track analysis. Basin Research.15(1):139-152. DOI: 10.1785/0220150067.
[90] K. W. Chang, H. Yoon. (2018). 3-D modeling of induced seismicity along multiple faults: magnitude, rate, and location in a poroelasticity system. Journal of Geophysical Research: Solid Earth.123(11):9866-9883. DOI: 10.1785/0220150067.
[91] K. W. Chang, H. Yoon, M. J. Martinez. (2018). Seismicity rate surge on faults after shut-in: poroelastic response to fluid injection. Bulletin of the Seismological Society of America.108(4):1889-1904. DOI: 10.1785/0220150067.
[92] P. A. Fokker, H. Hofmann, P. Meier, K.-B. Min. et al.Harmonic pulse testing as a monitoring tool during hydraulic stimulation of an enhanced geothermal system. . DOI: 10.1785/0220150067.
[93] K. W. Chang, P. Segall. (2016). Injection-induced seismicity on basement faults including poroelastic stressing. Journal of Geophysical Research: Solid Earth.121(4):2708-2726. DOI: 10.1785/0220150067.
[94] N. Kato, T. Hirono. (2016). Heterogeneity in friction strength of an active fault by incorporation of fragments of the surrounding host rock. Earth, Planets and Space.68(1). DOI: 10.1785/0220150067.
[95] C.-M. Kim, R. Han, G. Y. Jeong, J. O. Jeong. et al.(2016). Internal structure and materials of the Yangsan fault, Bogyeongsa area, Pohang, South Korea. Geosciences Journal.20(6):759-773. DOI: 10.1785/0220150067.
[96] K. C. Devkota, J.-E. Ham, G.-W. Kim. (2009). Characteristics of discontinuity spacing of Yeongdeok granite. Geosciences Journal.13(2):161-165. DOI: 10.1785/0220150067.
[97] J. Angelier. (1994). Fault slip analysis and paleostress reconstruction. Continental Deformation:53-100. DOI: 10.1785/0220150067.
[98] Gyeongsangbuk-do Tour 2016. (2018). Pohang hot spring. DOI: 10.1785/0220150067.
[99] K. F. Evans, A. Zappone, T. Kraft, N. Deichmann. et al.(2012). A survey of the induced seismic responses to fluid injection in geothermal and CO reservoirs in Europe. Geothermics.41:30-54. DOI: 10.1785/0220150067.
[100] N. Deichmann, D. Giardini. (2009). Earthquakes induced by the stimulation of an enhanced geothermal system below Basel (Switzerland). Seismological Research Letters.80(5):784-798. DOI: 10.1785/0220150067.
[101] A. Psyrillos, D. A. C. Manning, S. D. Burley. (2001). The nature and significance of illite associated with quartz-hematite hydrothermal veins in the St. Austell pluton, Cornwall, England. Clay Minerals.36(4):585-597. DOI: 10.1785/0220150067.
[102] A. Hackston, E. Rutter. (2016). The Mohr–Coulomb criterion for intact rock strength and friction – a re-evaluation and consideration of failure under polyaxial stresses. Solid Earth.7(2):493-508. DOI: 10.1785/0220150067.
[103] US Geological Survey 2018. (2018). M 5.5 - 7km WSW of Heung-hai, South Korea. U.S. Geological Survey Earthquake Hazards Program. DOI: 10.1785/0220150067.
文献评价指标
浏览 23次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次