首页 » 文章 » 文章详细信息
Evidence-Based Complementary and Alternative Medicine Volume 2019 ,2019-07-21
Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study
Research Article
Hadeel A. Al-Rawaf 1 , 2 Sami A. Gabr 1 Ahmad H. Alghadir 1
Show affiliations
Received 2019-03-31, accepted for publication 2019-07-11, Published 2019-07-11

Background. Circulating micro-RNAs are differentially expressed in various tissues and could be considered as potential regulatory biomarkers for T2DM and related complications, such as chronic wounds. Aim. In the current study, we investigated whether ginger extract enriched with [6]-gingerol-fractions either alone or in combination with vitamin D accelerates diabetic wound healing and explores underlying molecular changes in the expression of miRNA and their predicted role in diabetic wound healing. Methods. Diabetic wounded mice were treated with [6]-gingerol-fractions (GF) (25 mg/kg of body weight) either alone or in combination with vitamin D (100 ng/kg per day) for two weeks. Circulating miRNA profile, fibrogenesis markers, hydroxyproline (HPX), fibronectin (FN), and collagen deposition, diabetic control variables, FBS, HbA1c, C-peptide, and insulin, and wound closure rate and histomorphometric analyses were, respectively, measured at days 3, 6, 9, and 15 by RT–PCR and immunoassay analysis. Results. Treatment of diabetic wounds with GF and vitamin D showed significant improvement in wound healing as measured by higher expression levels of HPX, FN, collagen, accelerated wound closure, complete epithelialization, and scar formation in short periods (11-13 days, (P<0.01). On a molecular level, three circulating miRNAs, miR-155, miR-146a, and miR-15a, were identified in diabetic and nondiabetic skin wounds by PCR analysis. Lower expression in miR-155 levels and higher expression of miR-146a and miR-15a levels were observed in diabetic skin wounds following treatment with gingerols fractions and vitamin D for 15 days. The data showed that miRNAs, miR-146a, miR-155, and miR-15a, correlated positively with the expression levels of HPX, FN, and collagen and negatively with FBS, HbA1c, C-peptide, and insulin in diabetic wounds following treatment with GF and /or vitamin D, respectively. Conclusion. Treatment with gingerols fractions (GF) and vitamin D for two weeks significantly improves delayed diabetic wound healing. The data showed that vitamin D and gingerol activate vascularization, fibrin deposition (HPX, FN, and collagen), and myofibroblasts in such manner to synthesize new tissues and help in the scar formation. Accordingly, three miRNAs, miR-155, miR-146a, and miR-15, as molecular targets, were identified and significantly evaluated in wound healing process. It showed significant association with fibrin deposition, vascularization, and reepithelialization process following treatment with GF and vitamin D. It proposed having anti-inflammatory action and promoting new tissue formation via vascularization process during the wound healing. Therefore, it is very interesting to consider miRNAs as molecular targets for evaluating the efficiency of nondrug therapy in the regulation of wound healing process.


Copyright © 2019 Hadeel A. Al-Rawaf et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Sami A. Gabr.Rehabilitation Research Chair, College of Applied Medical Sciences, King Saud University, Riyadh, Saudi Arabia, ksu.edu.sa.sgabr@ksu.edu.sa


Hadeel A. Al-Rawaf,Sami A. Gabr,Ahmad H. Alghadir. Molecular Changes in Diabetic Wound Healing following Administration of Vitamin D and Ginger Supplements: Biochemical and Molecular Experimental Study. Evidence-Based Complementary and Alternative Medicine ,Vol.2019(2019)



[1] A. Caporali, M. Meloni, C. Völlenkle, D. Bonci. et al.(2011). Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation.123(3):282-291. DOI: 10.1056/NEJM198412203112506.
[2] C. Wang, S. Wan, T. Yang, D. Niu. et al.(2016). Increased serum microRNAs are closely associated with the presence of microvascular complications in type 2 diabetes mellitus. Scientific Reports.6(1). DOI: 10.1056/NEJM198412203112506.
[3] B. Adam, N. Muhammad, K. Aslam, J. Johnson. et al.(2009). A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid-damaged hairless rat skin. Wound Repair Regen.17:360-365. DOI: 10.1056/NEJM198412203112506.
[4] L. W. Roscoe. (2009). A combination of curcumin and ginger extract improves abrasion wound healing of corticosteroid damaged hairless rat skin. Wound Repair Regen.17(3):360. DOI: 10.1056/NEJM198412203112506.
[5] M. Afzal, D. Al-Hadidi, M. Menon, J. Pesek. et al.(2001). Ginger: An ethnomedical, chemical and pharmacological review. Drug Metabolism and Drug Interactions.18(3-4):159-190. DOI: 10.1056/NEJM198412203112506.
[6] A. H. B. Mohamed, A. A. F. Osman. (2017). Antibacterial and wound healing potential of ethanolic extract of officinale albino rats. Journal of Diseases and Medicinal Plants.3(1):1-6. DOI: 10.1056/NEJM198412203112506.
[7] J. Vandesompele, K. De Preter, F. Pattyn, B. Poppe. et al.(2002). Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biology.3(7). DOI: 10.1056/NEJM198412203112506.
[8] B. Feng, S. Chakrabarti. (2012). miR-320 regulates glucose-induced gene expression in diabetes. ISRN Endocrinology.2012-6. DOI: 10.1056/NEJM198412203112506.
[9] P. S. George, E. R. Pearson, M. D. Witham. (2012). Effect of vitamin D supplementation on glycaemic control and insulin resistance: a systematic review and meta-analysis. Diabetic Medicine.29(8):e142-e150. DOI: 10.1056/NEJM198412203112506.
[10] L. L. Husemoen, B. H. Thuesen, M. Fenger, T. Jorgensen. et al.(2012). Serum 25(OH)D and Type 2 Diabetes Association in a General Population: A prospective study. Diabetes Care.35(8):1695-1700. DOI: 10.1056/NEJM198412203112506.
[11] R. C. Friedman, K. K. Farh, C. B. Burge, D. P. Bartel. et al.(2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Research.19(1):92-105. DOI: 10.1056/NEJM198412203112506.
[12] Y. Sivasothy, W. K. Chong, A. Hamid, I. M. Eldeen. et al.(2011). Essential oil of zingiber officinale var. rubrum Theilade and their antibacterial activities. Journal of Food chemistry.124(2):514-517. DOI: 10.1056/NEJM198412203112506.
[13] M. C. Mesomo, A. D. P. Scheer, E. Perez, P. M. Ndiaye. et al.(2012). Ginger (zingiber officinale R.) extracts obtained using supercritical CO2 and compressd propene: kinetics and antioxidant activity evaluation. The Journal of Supercritical Fluids.71:102-109. DOI: 10.1056/NEJM198412203112506.
[14] H. Azhari, S. Nour Sook, H. Abdurahman. (2017). Extraction and chemical compositions of ginger (zingiber officinale roscoe) essential oils as cockroaches repellent. Australian Journal of Basic and Applied Sciences.11(3):1-8. DOI: 10.1056/NEJM198412203112506.
[15] X. Su, X. Liu, S. Wang, B. Li. et al.(2017). Wound-healing promoting effect of total tannins from Entada phaseoloides (L.) Merr. in rats. Burns.43(4):830-838. DOI: 10.1056/NEJM198412203112506.
[16] G. Sebastiani, F. Mancarella, G. Ventriglia, L. Nigi. et al.(2015). MicroRNA miR-124a, a negative regulator of insulin secretion, is hyperexpressed in human pancreatic islets of type 2 diabetic patients. RNA Dis.2:1-5. DOI: 10.1056/NEJM198412203112506.
[17] F. J. Ortega, J. M. Mercader, V. Catalán, J. M. Moreno-Navarrete. et al.(2013). Targeting the circulating microRNA signature of obesity. Clinical Chemistry.59(5):781-792. DOI: 10.1056/NEJM198412203112506.
[18] S. Rome. (2013). Are extracellular microRNAs involved in type 2 diabetes and related pathologies?. Clinical Biochemistry.46(10-11):937-945. DOI: 10.1056/NEJM198412203112506.
[19] P. R. Amable, M. V. T. Teixeira, R. B. V. Carias, J. M. Granjeiro. et al.(2014). Protein synthesis and secretion in human mesenchymal cells derived from bone marrow, adipose tissue and Wharton's jelly. Stem Cell Research & Therapy.5(2, article 53). DOI: 10.1056/NEJM198412203112506.
[20] J. Roos, E. Enlund, J. Funcke, D. Tews. et al.(2016). miR-146a-mediated suppression of the inflammatory response in human adipocytes. Scientific Reports.6(1). DOI: 10.1056/NEJM198412203112506.
[21] S. Dugasani, M. R. Pichika, V. D. Nadarajah, M. K. Balijepalli. et al.(2010). Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. Journal of Ethnopharmacology.127(2):515-520. DOI: 10.1056/NEJM198412203112506.
[22] C. A. Balbino, L. M. Pereira, R. Curi. (2005). Mecanismos envolvidos na cicatrização: uma revisão. Brazilian Journal of Pharmaceutical Sciences.41(1):27-52. DOI: 10.1056/NEJM198412203112506.
[23] M. P. Boldin, K. D. Taganov, D. S. Rao, L. Yang. et al.(2011). miR-146a is a significant brake on autoimmunity, myeloproliferation, and cancer in mice. The Journal of Experimental Medicine.208(6):1189-1201. DOI: 10.1056/NEJM198412203112506.
[24] W. Wang, C. Li, X. Wen, P. Li. et al.(2009). Simultaneous determination of 6-gingerol, 8-gingerol, 10-gingerol and 6-shogaol in rat plasma by liquid chromatography–mass spectrometry: Application to pharmacokinetics. Journal of Chromatography B.877(8-9):671-679. DOI: 10.1056/NEJM198412203112506.
[25] L. T. Dalgaard, E. C. Leal, R. Svendsen. (2018). Effects of the diabetes-induced microrna-155 on wound healing and fibroblast growth factor 7 expression. Diabetes.67(Supplement 1):18-LB-29-LB. DOI: 10.1056/NEJM198412203112506.
[26] A. A. Giangreco, A. Vaishnav, D. Wagner, A. Finelli. et al.(2013). Tumor suppressor microRNAs, miR-100 and -125b, are regulated by 1,25-dihydroxyvitamin D in primary prostate cells and in patient tissue. Cancer Prevention Research.6(5):483-494. DOI: 10.1056/NEJM198412203112506.
[27] E. Van Etten, B. Decallonne, R. Bouillon, C. Mathieu. et al.(2004). NOD bone marrowderived dendritic cells are modulated by analogs of 1,25-dihydroxyvitamin D3. The Journal of Steroid Biochemistry and Molecular Biology.89-90:457-459. DOI: 10.1056/NEJM198412203112506.
[28] Y. Li, V. H. Tran, N. Koolaji, C. C. Duke. et al.(2013). (S)-[6]-gingerol enhances glucose uptake in L6 myotubes by activation of AMPK in response to [ca2+]i. Journal of Pharmacy & Pharmaceutical Sciences.16(2):304-312. DOI: 10.1056/NEJM198412203112506.
[29] V. Falanga. (1993). Chronic wounds: pathophysiologic and experimental considerations. J Invest Dermatol.100(5):721-725. DOI: 10.1056/NEJM198412203112506.
[30] B. Feng, S. Chen, K. McArthur, Y. Wu. et al.(2011). miR-146a-mediated extracellular matrix protein production in chronic diabetes complications. Diabetes.60(11):2975-2984. DOI: 10.1056/NEJM198412203112506.
[31] Y. F. Yuan, S. K. Das, M. Q. Li. (2018). Vitamin D ameliorates impaired wound healing in streptozotocin-induced diabetic mice by suppressing endoplasmic reticulum stress. Journal of Diabetes Research.2018-10. DOI: 10.1056/NEJM198412203112506.
[32] M. J. Son, Y. Miura, K. Yagasaki. (2015). Mechanisms for antidiabetic effect of gingerol in cultured cells and obese diabetic model mice. Cytotechnology.67(4):641-652. DOI: 10.1056/NEJM198412203112506.
[33] H. Li-Korotky, P. A. Hebda, L. A. Kelly, C. Lo. et al.(2006). Identification of a pre-mRNA splicing factor, arginine/serine-rich 3 (Sfrs3), and its co-expression with fibronectin in fetal and postnatal rabbit airway mucosal and skin wounds. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease.1762(1):34-45. DOI: 10.1056/NEJM198412203112506.
[34] M. Mann, A. Mehta, JL. Zhao. (2017). An NF-kappaB-microRNA regulatory network tunes macrophage inflammatory responses. Nature Communications.8(1):851. DOI: 10.1056/NEJM198412203112506.
[35] A. Srivastava, P. Nikamo, W. Lohcharoenkal, D. Li. et al.(2017). MicroRNA-146a suppresses IL-17–mediated skin inflammation and is genetically associated with psoriasis. The Journal of Allergy and Clinical Immunology.139(2):550-561. DOI: 10.1056/NEJM198412203112506.
[36] Y. M. Li, V. H. Tran, C. C. Duke, B. D. Roufogalis. et al.(2012). Gingerols of zingiber officinale enhance glucose uptake by increasing cell surface GLUT4 in cultured L6 myotubes. Planta Medica.78(14):1549-1555. DOI: 10.1056/NEJM198412203112506.
[37] K. Sekiya, A. Ohtani, S. Kusano. (2004). Enhancement of insulin sensitivity in adipocytes by ginger. BioFactors.22(1-4):153-156. DOI: 10.1056/NEJM198412203112506.
[38] J. O. Lee, N. Kim, H. J. Lee, J. W. Moon. et al.(2015). Gingerol affects glucose metabolism by dual regulation via the AMPK2-mediated as160-rab5 pathway and ampk-mediated insulin sensitizing effects. Journal of Cellular Biochemistry.116(7):1401-1410. DOI: 10.1056/NEJM198412203112506.
[39] T. Zitman-Gal, J. Green, M. Pasmanik-Chor, E. Golan. et al.(2014). Vitamin D manipulates miR-181c, miR-20b and miR-15a in human umbilical vein endothelial cells exposed to a diabetic-like environment. Cardiovascular Diabetology.13(1):8. DOI: 10.1056/NEJM198412203112506.
[40] L. Helming, J. Böse, J. Ehrchen, S. Schiebe. et al.(2005). 1, 25- dihydroxyvitamin D3 is a potent suppressor of interferon -mediated macrophage activation. Blood.106(13):4351-4358. DOI: 10.1056/NEJM198412203112506.
[41] P. Mocharla, S. Briand, G. Giannotti, C. Dörries. et al.(2013). AngiomiR-126 expression and secretion from circulating CD34 and CD14 PBMCs: role for proangiogenic effects and alterations in type 2 diabetics. Blood.121(1):226-236. DOI: 10.1056/NEJM198412203112506.
[42] S.-S. Wang, Y.-Q. Li, Y.-Z. Liang, J. Dong. et al.(2017). Expression of miR-18a and miR-34c in circulating monocytes associated with vulnerability to type 2 diabetes mellitus and insulin resistance. Journal of Cellular and Molecular Medicine.21(12):3372-3380. DOI: 10.1056/NEJM198412203112506.
[43] A. G. Pittas, J. Lau, F. B. Hu, B. Dawson-Hughes. et al.(2007). The role of vitamin D and calcium in type 2 diabetes. A systematic review and meta-analysis. The Journal of Clinical Endocrinology & Metabolism.92(6):2017-2029. DOI: 10.1056/NEJM198412203112506.
[44] A. E. Riek, J. Oh, J. E. Sprague, A. Timpson. et al.(2012). Vitamin D suppression of endoplasmic reticulum stress promotes an antiatherogenic monocyte/macrophage phenotype in type 2 diabetic patients. The Journal of Biological Chemistry.287(46):38482-38494. DOI: 10.1056/NEJM198412203112506.
[45] Y. Feng, L. Chen, Q. Luo, M. Wu. et al.(2018). Involvement of microRNA-146a in diabetic peripheral neuropathy through the regulation of inflammation. Drug Design, Development and Therapy.Volume 12:171-177. DOI: 10.1056/NEJM198412203112506.
[46] S. Afzal, S. E. Bojesen, B. G. Nordestgaard. (2013). Low 25-hydroxyvitamin D and risk of type 2 diabetes: A prospective cohort study and metaanalysis. Clinical Chemistry.59(2):381-391. DOI: 10.1056/NEJM198412203112506.
[47] J. Mitri, B. Dawson-Hughes, F. B. Hu, A. G. Pittas. et al.(2011). Effects of vitamin D and calcium supplementation on pancreatic cell function, insulin sensitivity, and glycemia in adults at high risk of diabetes: the Calcium and Vitamin D for Diabetes Mellitus (CaDDM) randomized controlled trial. American Journal of Clinical Nutrition.94(2):486-494. DOI: 10.1056/NEJM198412203112506.
[48] J. Ye, Y. Kang, X. Sun, P. Ni. et al.(2017). MicroRNA-155 inhibition promoted wound healing in diabetic rats. The International Journal of Lower Extremity Wounds.16(2):74-84. DOI: 10.1056/NEJM198412203112506.
[49] M. Tabesh, L. Azadbakht, E. Faghihimani, M. Tabesh. et al.(2014). Effects of calcium–vitamin D co-supplementation on metabolic profiles in vitamin D insufficient people with type 2 diabetes: a randomised controlled clinical trial. Diabetologia.57(10):2038-2047. DOI: 10.1056/NEJM198412203112506.
[50] F. Meisgen, N. Xu Landén, A. Wang, B. Réthi. et al.(2014). MiR-146a negatively regulates TLR2-induced inflammatory responses in keratinocytes. Journal of Investigative Dermatology.134(7):1931-1940. DOI: 10.1056/NEJM198412203112506.
[51] A. G. Pittas, S. S. Harris, P. C. Stark, B. Dawson-Hughes. et al.(2007). The effects of calcium and vitamin D supplementation on blood glucose and markers of inflammation in nondiabetic adults. Diabetes Care.30(4):980-986. DOI: 10.1056/NEJM198412203112506.
[52] I. K. R. Agra, L. L. S. Pires, P. S. M. Carvalho, E. A. Silva-Filho. et al.(2013). Evaluation of wound healing and antimicrobial properties of aqueous extract from Bowdichia virgilioides stem barks in mice. Anais da Academia Brasileira de Ciências.85(3):945-954. DOI: 10.1056/NEJM198412203112506.
[53] K. Hayashi, R. Kojima, M. Ito. (2006). Strain differences in the diabetogenic activity of streptozotocin in mice. Biological & Pharmaceutical Bulletin.29(6):1110-1119. DOI: 10.1056/NEJM198412203112506.
[54] Y. Yuan, S. Das, M. Li. (2018). Vitamin D ameliorates impaired wound healing in streptozotocin-induced diabetic mice by suppressing NF-B-mediated inflammatory genes. Bioscience Reports.38(2). DOI: 10.1056/NEJM198412203112506.
[55] A. J. Boulton, D. G. Armstrong, S. F. Albert, R. G. Frykberg. et al.(2008). Comprehensive foot examination and risk assessment: a report of the task force of the foot care interest group of the american diabetes association, with endorsement by the american association of clinical endocrinologists. Diabetes Care.31(8):1679-1685. DOI: 10.1056/NEJM198412203112506.
[56] S. A. Gabr, A. H. Alghadir, G. A. Ghoniem. (2019). Biological activities of ginger against cadmium-induced renal toxicity. Saudi Journal of Biological Sciences.26(2):382-389. DOI: 10.1056/NEJM198412203112506.
[57] W. Ni, S. W. Watts, M. Ng, S. Chen. et al.(2014). Elimination of vitamin D receptor in vascular endothelial cells alters vascular function. Hypertension.64(6):1290-1298. DOI: 10.1056/NEJM198412203112506.
[58] J. S. Adams, M. Hewison. (2008). Unexpected actions of vitamin D: new perspectives on the regulation of innate and adaptive immunity. Nature Clinical Practice: Endocrinology & Metabolism.4(2):80-90. DOI: 10.1056/NEJM198412203112506.
[59] B. S. Reddy, R. K. K. Reddy, V. G. M. Naidu, K. Madhusudhana. et al.(2008). Evaluation of antimicrobial, antioxidant and wound-healing potentials of. Journal of Ethnopharmacology.115(2):249-256. DOI: 10.1056/NEJM198412203112506.
[60] X. Q. Tian, T. C. Chen, M. F. Holick. (1995). 1,25-Dihydroxyvitamin D3: A novel agent for enhancing wound healing. Journal of Cellular Biochemistry.59(1):53-56. DOI: 10.1056/NEJM198412203112506.
[61] A. Hasmann, E. Wehrschuetz-Sigl, A. Marold, H. Wiesbauer. et al.(2013). Analysis of myeloperoxidase activity in wound fluids as a marker of infection. Annals of Clinical Biochemistry.50(3):245-254. DOI: 10.1056/NEJM198412203112506.
[62] D. Chakraborty, A. Mukherjee, S. Sikdar, A. Paul. et al.(2012). [6]-Gingerol isolated from ginger attenuates sodium arsenite induced oxidative stress and plays a corrective role in improving insulin signaling in mice. Toxicology Letters.210(1):34-43. DOI: 10.1056/NEJM198412203112506.
[63] R. G. Frykberg, T. Zgonis, D. G. Armstrong, V. R. Driver. et al.(2006). American College of Foot and Ankle Surgeons. Diabetic foot disorders. A clinical practice guideline (2006 revision). Journal of Foot and Ankle Surgery.45(5):S1-S66. DOI: 10.1056/NEJM198412203112506.
[64] N. Bhagavathula, R. L. Warner, M. DaSilva, S. D. McClintock. et al.(2009). A combination of curcumin and ginger extract improves abrasion wound healing in corticosteroid-impaired hairless rat skin. Wound Repair and Regeneration.17(3):360-366. DOI: 10.1056/NEJM198412203112506.
[65] S. O. Udegbunam, R. I. Udegbunam, C. C. Muogbo, M. U. Anyanwu. et al.(2014). Wound healing and antibacterial properties of methanolic extract of Pupalia lappacea Juss in rats. BMC Complementary and Alternative Medicine.14, article 157. DOI: 10.1056/NEJM198412203112506.
[66] C. Griffiths, A. N. Russman, G. Majmudar, R. S. Singer. et al.(1993). Restoration ofcollagen formation in photodamaged human skin by tretinoin (retinoic acid). The New England Journal of Medicine.329(8):530-535. DOI: 10.1056/NEJM198412203112506.
[67] J. A. Silva, A. B. Becceneri, H. S. Mutti, A. C. Martin. et al.(2012). Purification and differential biological effects of ginger-derived substances on normal and tumor cell lines. Journal of Chromatography B.903:157-162. DOI: 10.1056/NEJM198412203112506.
[68] P. R. Graves, T. A. J. Haystead. (2002). Molecular biologist's guide to proteomics. Microbiology and Molecular Biology Reviews.66(1):39-63. DOI: 10.1056/NEJM198412203112506.
[69] D. Schiffer, G. Tegl, R. Vielnascher, H. Weber. et al.(2016). Myeloperoxidase-responsive materials for infection detection based on immobilized aminomethoxyphenol. Biotechnology and Bioengineering.113(12):2553-2560. DOI: 10.1056/NEJM198412203112506.
[70] L. M. Villeneuve, M. Kato, M. A. Reddy, M. Wang. et al.(2010). Enhanced Levels of microRNA-125b in Vascular Smooth Muscle Cells of Diabetic db/db Mice Lead to Increased Inflammatory Gene Expression by Targeting the Histone Methyltransferase Suv39h1. Diabetes.59(11):2904-2915. DOI: 10.1056/NEJM198412203112506.
[71] A. J. Singer, R. A. F. Clark. (1999). Cutaneous wound healing. The New England Journal of Medicine.341(10):738-746. DOI: 10.1056/NEJM198412203112506.
[72] E. Tili, J. J. Michaille, A. Cimino, S. Costinean. et al.(2007). Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. The Journal of Immunology.179(8):5082-5089. DOI: 10.1056/NEJM198412203112506.
[73] D. S. Fabricant, N. R. Farnsworth. (2001). The value of plants used in traditional medicine for drug discovery. Environmental Health Perspectives.109(1):69-75. DOI: 10.1056/NEJM198412203112506.
[74] M. Ha, V. N. Kim. (2014). Regulation of microRNA biogenesis. Nature Reviews Molecular Cell Biology.15:509-524. DOI: 10.1056/NEJM198412203112506.
[75] M. Mehrabani Natanzi, M. Kamalinejad, Z. Khodaii, J. Kamali. et al.(2017). Wound healing effect of aqueous extract of rhus coriaria in rat. AUMJ.6(1):5159. DOI: 10.1056/NEJM198412203112506.
[76] S. M. Hammond. (2015). An overview of microRNAs. Advanced Drug Delivery Reviews.87:3-14. DOI: 10.1056/NEJM198412203112506.
[77] X. Chen, Y. Ba, L. Ma, X. Cai. et al.(2008). Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research.18(10):997-1006. DOI: 10.1056/NEJM198412203112506.
[78] I. M. Abu-Reidah, M. S. Ali-Shtayeh, R. M. Jamous, D. Arráez-Román. et al.(2015). HPLC–DAD–ESI-MS/MS screening of bioactive components from L. (Sumac) fruits. Food Chemistry.166:179-191. DOI: 10.1056/NEJM198412203112506.
[79] A. Desmoulière, I. A. Darby, G. Gabbiani. (2003). Normal and pathologic soft tissue remodeling: role of the myofibroblast, with special emphasis on liver and kidney fibrosis. Laboratory Investigation.83(12):1689-1707. DOI: 10.1056/NEJM198412203112506.
[80] S. H. Lee. (2003). The chalcone butein from rhus verniciflua shows antifibrogenic activity. Planta Medica.69:990-994. DOI: 10.1056/NEJM198412203112506.
[81] A. Oryan, A. H. Shoushtari. (2008). Histology and Ultrastructure of the Developing Superficial Digital Flexor Tendon in Rabbits. Anatomia, Histologia, Embryologia: Journal of Veterinary Medicine Series C.37(2):134-140. DOI: 10.1056/NEJM198412203112506.
[82] P. D. Verhaegen, H. J. Schouten, W. Tigchelaar-Gutter, J. Van Marle. et al.(2012). Adaptation of the dermal collagen structure of human skin and scar tissue in response to stretch: an experimental study. Wound Repair and Regeneration.20(5):658-666. DOI: 10.1056/NEJM198412203112506.
[83] R. Y. Reins, S. D. Hanlon, S. Magadi, A. M. McDermott. et al.(2016). Effects of Topically Applied Vitamin D during Corneal Wound Healing. PLoS ONE.11(4):e0152889. DOI: 10.1056/NEJM198412203112506.
[84] J. Xu, W. Wu, L. Zhang, W. Dorset-Martin. et al.(2012). The role of MicroRNA-146a in the pathogenesis of the diabetic wound-healing impairment: correction with mesenchymal stem cell treatment. Diabetes.61(11):2906-2912. DOI: 10.1056/NEJM198412203112506.
[85] J. S. Boateng, K. H. Matthews, H. N. E. Stevens, G. M. Eccleston. et al.(2008). Wound healing dressings and drug delivery systems: a review. Journal of Pharmaceutical Sciences.97(8):2892-2923. DOI: 10.1056/NEJM198412203112506.
[86] B. K. Manjunatha, S. M. Vidya, K. V. Rashmi, K. L. Mankani. et al.(2005). Evaluation of wound-healing potency of Hk. Indian Journal of Pharmacology.37(4):223-226. DOI: 10.1056/NEJM198412203112506.
[87] I. Bergman, R. Loxley. (1963). Two improved and simplified methods for the spectrophotometric determination of hydroxyproline. Analytical Chemistry.35(12):1961-1965. DOI: 10.1056/NEJM198412203112506.
[88] R. Kossah, C. Nsabimana, H. Zhang, W. Chen. et al.(2013). Evaluation of antimicrobial and antioxidant activities of Syrian Sumac fruit extract. J Natural Products.6:96-102. DOI: 10.1056/NEJM198412203112506.
[89] F. Sadaf, R. Saleem, M. Ahmed, S. I. Ahmad. et al.(2006). Healing potential of creamcontaining extract of Sphaeranthus indicus on dermal wounds in Guinea pigs. Journal of Ethnopharmacology.107(2):161-163. DOI: 10.1056/NEJM198412203112506.
[90] E. Shumilina, N. T. Xuan, N. Matzner, M. Bhandaru. et al.(2010). Regulation of calcium signaling in dendritic cells by 1,25-dihydroxyvitamin D 3. The FASEB Journal.24(6):1989-1996. DOI: 10.1056/NEJM198412203112506.
[91] S. O. Kim, J. K. Kundu, Y. K. Shin, J.-H. Park. et al.(2005). [6]-Gingerol inhibits COX-2 expression by blocking the activation of p38 MAP kinase and NF-B in phorbol ester-stimulated mouse skin. Oncogene.24(15):2558-2567. DOI: 10.1056/NEJM198412203112506.
[92] M. S. K. Wong, M. S. Leisegang, C. Kruse, J. Vogel. et al.(2014). Vitamin D promotes vascular regeneration. Circulation.130(12):976-986. DOI: 10.1056/NEJM198412203112506.
[93] L. Sun, B. Jiang, W. Li, J. Zou. et al.(2011). MicroRNA-15a positively regulates insulin synthesis by inhibiting uncoupling protein-2 expression. Diabetes Research and Clinical Practice.91(1):94-100. DOI: 10.1056/NEJM198412203112506.
[94] B. H. Ali, G. Blunden, M. O. Tanira, A. Nemmar. et al.(2008). Some phytochemical, pharmacological and toxicological properties of ginger (): a review of recent research. Food and Chemical Toxicology.46(2):409-420. DOI: 10.1056/NEJM198412203112506.
[95] M. Cohen-Lahav, A. Douvdevani, C. Chaimovitz, S. Shany. et al.(2007). The anti-inflammatory activity of 1,25-dihydroxyvitamin D3 in macrophages. The Journal of Steroid Biochemistry and Molecular Biology.103(3–5):558-562. DOI: 10.1056/NEJM198412203112506.
[96] E. Sonkoly, J. Loven, N. Xu. (2012). MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis.1(e3). DOI: 10.1056/NEJM198412203112506.
[97] T. Anwer, M. Sharma, G. Khan, M. Iqbal. et al.(2013). Rhus coriaria ameliorates insulin resistance in non-insulin-dependent diabetes mellitus (NIDDM) rats. Acta Poloniae Pharmaceutica. Drug Research.70(5):861-867. DOI: 10.1056/NEJM198412203112506.
[98] S. Horie, H. Yamamoto, G. J. Michael, M. Uchida. et al.(2004). Protective role of vanilloid receptor type 1 in HCl-induced gastric mucosal lesions in rats. Scandinavian Journal of Gastroenterology.39(4):303-312. DOI: 10.1056/NEJM198412203112506.
[99] X. Zheng, A. Li, L. Zhao, T. Zhou. et al.(2013). Key role of microRNA-15a in the KLF4 suppressions of proliferation and angiogenesis in endothelial and vascular smooth muscle cells. Biochemical and Biophysical Research Communications.437(4):625-631. DOI: 10.1056/NEJM198412203112506.
[100] P. K. Mukherjee, R. Verpoorte, B. Suresh. (2000). Evaluation of in-vivo wound healing activity of Hypericum patulum (Family: Hypericaceae) leaf extract on different wound model in rats. Journal of Ethnopharmacology.70(3):315-321. DOI: 10.1056/NEJM198412203112506.
[101] P. W. Brand. (1988). Repetitive stress in the development of diabetic foot ulcers. The Diabetic Foot:83-90. DOI: 10.1056/NEJM198412203112506.
[102] H. A. Al-Rawaf. (2018). Circulating microRNAs and adipokines as markers of metabolic syndrome in adolescents with obesity. Clinical Nutrition. DOI: 10.1056/NEJM198412203112506.
[103] F. W. LoGerfo, J. D. Coffman. (1984). Current concepts. Vascular and microvascular disease of the foot in diabetes. The New England Journal of Medicine.311(25):1615-1619. DOI: 10.1056/NEJM198412203112506.
[104] S. Nicoli, C. Padula, V. Aversa, B. Vietti. et al.(2008). Characterization of rabbit ear skin as a skin model for in vitro transdermal permeation experiments: histology, lipid composition and permeability. Skin Pharmacology and Physiology.21(4):218-226. DOI: 10.1056/NEJM198412203112506.
[105] M. Edmonds. (1999). Progress in care of the diabetic foot. The Lancet.354(9175):270-272. DOI: 10.1056/NEJM198412203112506.
[106] W. J. Jeffcoate, K. G. Harding. (2003). Diabetic foot ulcers. The Lancet.361(9368):1545-1551. DOI: 10.1056/NEJM198412203112506.
[107] H. F. Luderer, R. M. Nazarian, E. D. Zhu, M. B. Demay. et al.(2013). Ligand-Dependent Actions of the Vitamin D Receptor Are Required for Activation of TGF- Signaling during the Inflammatory Response to Cutaneous Injury. Endocrinology.154(1):16-24. DOI: 10.1056/NEJM198412203112506.
[108] R. C. Lantz, G. J. Chen, M. Sarihan, A. M. Sólyom. et al.(2007). The effect of extracts from ginger rhizome on inflammatory mediator production. Phytomedicine.14(2-3):123-128. DOI: 10.1056/NEJM198412203112506.
[109] Y. Oda, C. L. Tu, A. Menendez, T. Nguyen. et al.(2015). Vitamin D and calcium regulation of epidermal wound healing. The Journal of Steroid Biochemistry and Molecular Biology.164:379-385. DOI: 10.1056/NEJM198412203112506.
[110] N. Kota, P. Krishna, K. Polasa. (2008). Alterations in antioxidant status of rats following intake of ginger through diet. Food Chemistry.106(3):991-996. DOI: 10.1056/NEJM198412203112506.
[111] M. Martinesi, S. Bruni, M. Stio, C. Treves. et al.(2006). 1,25-Dihydroxyvitamin D3 inhibits tumor necrosis factor--induced adhesion molecule expression in endothelial cells. Cell Biology International.30(4):365-375. DOI: 10.1056/NEJM198412203112506.
[112] H.-Y. Young, Y.-L. Luo, H.-Y. Cheng, W.-C. Hsieh. et al.(2005). Analgesic and anti-inflammatory activities of [6]-gingerol. Journal of Ethnopharmacology.96(1-2):207-210. DOI: 10.1056/NEJM198412203112506.
[113] M. Ito, Y. Kondo, A. Nakatani, A. Naruse. et al.(1999). New model of progressive non-insulin-dependent diabetes mellitus in mice induced by streptozotocin. Biological & Pharmaceutical Bulletin.22(9):988-989. DOI: 10.1056/NEJM198412203112506.
浏览 19次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次