首页 » 文章 » 文章详细信息
Computational and Mathematical Methods in Medicine Volume 2019 ,2019-07-25
Assessment of Local Dynamic Stability in Gait Based on Univariate and Multivariate Time Series
Research Article
Henryk Josiński 1 Adam Świtoński 1 Agnieszka Michalczuk 1 Piotr Grabiec 2 Magdalena Pawlyta 2 Konrad Wojciechowski 2
Show affiliations
DOI:10.1155/2019/6917658
Received 2019-03-22, accepted for publication 2019-07-03, Published 2019-07-03
PDF
摘要

The ability of the locomotor system to maintain continuous walking despite very small external or internal disturbances is called local dynamic stability (LDS). The importance of the LDS requires constantly working on different aspects of its assessment method which is based on the short-term largest Lyapunov exponent (LLE). A state space structure is a vital aspect of the LDS assessment because the algorithm of the LLE computation for experimental data requires a reconstruction of a state space trajectory. The gait kinematic data are usually one- or three-dimensional, which enables to construct a state space based on a uni- or multivariate time series. Furthermore, two variants of the short-term LLE are present in the literature which differ in length of a time span, over which the short-term LLE is computed. Both a state space structure and the consistency of the observations based on values of both short-term LLE variants were analyzed using time series representing the joint angles at ankle, knee, and hip joints. The short-term LLE was computed for individual joints in three state spaces constructed on the basis of either univariate or multivariate time series. Each state space revealed walkers’ locally unstable behavior as well as its attenuation in the current stride. The corresponding conclusions made on the basis of both short-term LLE variants were consistent in ca. 59% of cases determined by a joint and a state space. Moreover, the authors present an algorithm for estimation of the embedding dimension in the case of a multivariate gait time series.

授权许可

Copyright © 2019 Henryk Josiński et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Henryk Josiński.Institute of Informatics, Silesian University of Technology, Akademicka 16, 44-100 Gliwice, Poland, polsl.pl.henryk.josinski@polsl.pl

推荐引用方式

Henryk Josiński,Adam Świtoński,Agnieszka Michalczuk,Piotr Grabiec,Magdalena Pawlyta,Konrad Wojciechowski. Assessment of Local Dynamic Stability in Gait Based on Univariate and Multivariate Time Series. Computational and Mathematical Methods in Medicine ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. Hamacher, D. Hamacher, N. B. Singh, W. R. Taylor. et al.(2015). Towards the assessment of local dynamic stability of level-grounded walking in an older population. Medical Engineering & Physics.37(12):1152-1155. DOI: 10.1063/1.1324008.
[2] A. Szczęsna. (2019). Quaternion entropy for analysis of gait data. Entropy.21(1):79. DOI: 10.1063/1.1324008.
[3] L. Cao, A. Mees, K. Judd. (1998). Dynamics from multivariate time series. Physica D: Nonlinear Phenomena.121(1-2):75-88. DOI: 10.1063/1.1324008.
[4] P. Terrier, F. Luthi, O. Deriaz. (2013). Do orthopaedic shoes improve local stability of gait? An observation study in patients with chronic foot and ankle injuries. BMC Musculoskeletal Disorders.14(1). DOI: 10.1063/1.1324008.
[5] S. M. Bruijn, O. G. Meijer, P. J. Beek, J. H. van Dieёn. et al.(2013). Assessing the stability of human locomotion: a review of current measures. Journal of the Royal Society Interface.10(83). DOI: 10.1063/1.1324008.
[6] J. B. Dingwell, J. P. Cusumano. (2000). Nonlinear time series analysis of normal and pathological human walking. Chaos: An Interdisciplinary Journal of Nonlinear Science.10(4):848-863. DOI: 10.1063/1.1324008.
[7] J. J. Eng, D. A. Winter. (1995). Kinetic analysis of the lower limbs during walking: what information can be gained from a three-dimensional model?. Journal of Biomechanics.28(6):753-758. DOI: 10.1063/1.1324008.
[8] D. Hamacher, N. B. Singh, J. H. van Dieën, M. O. Heller. et al.(2011). Kinematic measures for assessing gait stability in elderly individuals: a systematic review. Journal of the Royal Society Interface.8(65):1682-1698. DOI: 10.1063/1.1324008.
[9] M. T. Rosenstein, J. J. Collins, C. J. De Luca. (1994). Reconstruction expansion as a geometry-based framework for choosing proper delay times. Physica D: Nonlinear Phenomena.73(1-2):82-98. DOI: 10.1063/1.1324008.
[10] H. Josiński, A. Michalczuk, R. Mucha, A. Świtoński. et al.Analysis of human motion data using recurrence plots and recurrence quantification measures. :397-406. DOI: 10.1063/1.1324008.
[11] I. Vlachos, D. Kugiumtzis. (2008). State space reconstruction for multivariate time series prediction. Nonlinear Phenomena in Complex Systems.11(2):241-249. DOI: 10.1063/1.1324008.
[12] T. E. Lockhart, J. Liu. (2008). Differentiating fall-prone and healthy adults using local dynamic stability. Ergonomics.51(12):1860-1872. DOI: 10.1063/1.1324008.
[13] S. Mehdizadeh. (2018). The largest Lyapunov exponent of gait in young and elderly individuals: a systematic review. Gait & Posture.60:241-250. DOI: 10.1063/1.1324008.
[14] C.-T. Zhang, J. Guo, Q.-L. Ma, H. Peng. et al.Phase space reconstruction and prediction of multivariate chaotic time series. :2428-2433. DOI: 10.1063/1.1324008.
[15] M. Piórek, H. Josiński, A. Michalczuk, A. Świtoński. et al.(2017). Quaternions and joint angles in an analysis of local stability of gait for different variants of walking speed and treadmill slope. Information Sciences.384:263-280. DOI: 10.1063/1.1324008.
[16] T. Jagrič, M. Marhl, D. Štajer. (2007). Irregularity test for very short electrocardiogram (ECG) signals as a method for predicting a successful defibrillation in patients with ventricular fibrillation. Translational Research.149(3):145-151. DOI: 10.1063/1.1324008.
[17] M. B. Kennel, R. Brown, H. D. I. Abarbanel. (1992). Determining embedding dimension for phase-space reconstruction using a geometrical construction. Physical Review A.45(6):3403-3411. DOI: 10.1063/1.1324008.
[18] K. S. van Schooten, S. M. Rispens, M. Pijnappels, A. Daffertshofer. et al.(2013). Assessing gait stability: the influence of state space reconstruction on inter- and intra-day reliability of local dynamic stability during over-ground walking. Journal of Biomechanics.46(1):137-141. DOI: 10.1063/1.1324008.
[19] M. T. Rosenstein, J. J. Collins, C. J. De Luca. (1993). A practical method for calculating largest Lyapunov exponents from small data sets. Physica D: Nonlinear Phenomena.65(1-2):117-134. DOI: 10.1063/1.1324008.
[20] D. Hamacher, D. Hamacher, K. Rehfeld, L. Schega. et al.(2016). Motor-cognitive dual-task training improves local dynamic stability of normal walking in older individuals. Clinical Biomechanics.32:138-141. DOI: 10.1063/1.1324008.
[21] J. B. Dingwell, L. C. Marin. (2006). Kinematic variability and local dynamic stability of upper body motions when walking at different speeds. Journal of Biomechanics.39(3):444-452. DOI: 10.1063/1.1324008.
[22] F. Reynard, P. Vuadens, O. Deriaz, P. Terrier. et al.(2014). Could local dynamic stability serve as an early predictor of falls in patients with moderate neurological gait disorders? a reliability and comparison study in healthy individuals and in patients with paresis of the lower extremities. PLoS One.9(6). DOI: 10.1063/1.1324008.
[23] M. Perc. (2005). The dynamics of human gait. European Journal of Physics.26(3):525-534. DOI: 10.1063/1.1324008.
[24] M. J. P. Toebes, M. J. M. Hoozemans, R. Furrer, J. Dekker. et al.(2012). Local dynamic stability and variability of gait are associated with fall history in elderly subjects. Gait & Posture.36(3):527-531. DOI: 10.1063/1.1324008.
[25] K. Harężlak. (2017). Eye movement dynamics during imposed fixations. Information Sciences.384:249-262. DOI: 10.1063/1.1324008.
[26] S. M. Bruijn, O. G. Meijer, P. J. Beek, J. H. van Dieën. et al.(2010). The effects of arm swing on human gait stability. Journal of Experimental Biology.213(23):3945-3952. DOI: 10.1063/1.1324008.
[27] S. A. England, K. P. Granata. (2007). The influence of gait speed on local dynamic stability of walking. Gait & Posture.25(2):172-178. DOI: 10.1063/1.1324008.
[28] H. Josiński, A. Świtoński, A. Michalczuk, P. Grabiec. et al.Analysis of chaotic behaviors in gait of the elderly using the CAREN extended system. . DOI: 10.1063/1.1324008.
[29] R. E. A. van Emmerik, S. W. Ducharme, A. C. Amado, J. Hamill. et al.(2016). Comparing dynamical systems concepts and techniques for biomechanical analysis. Journal of Sport and Health Science.5(1):3-13. DOI: 10.1063/1.1324008.
[30] H. A. Sturges. (1926). The choice of a class interval. Journal of the American Statistical Association.21(153):65-66. DOI: 10.1063/1.1324008.
[31] K. Liu, H. Wang, J. Xiao. (2015). The multivariate largest Lyapunov exponent as an age-related metric of quiet standing balance. Computational and Mathematical Methods in Medicine.2015-11. DOI: 10.1063/1.1324008.
[32] B. Henry, N. Lovell, F. Camacho. (2001). Nonlinear dynamics time series analysis. Nonlinear Biomedical Signal Processing: Dynamic Analysis and Modeling. DOI: 10.1063/1.1324008.
[33] D. H. Gates, J. B. Dingwell. (2009). Comparison of different state space definitions for local dynamic stability analyses. Journal of Biomechanics.42(9):1345-1349. DOI: 10.1063/1.1324008.
文献评价指标
浏览 8次
下载全文 2次
评分次数 0次
用户评分 0.0分
分享 0次