首页 » 文章 » 文章详细信息
Behavioural Neurology Volume 2019 ,2019-07-22
From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation
Review Article
Grigorios Nasios 1 Efthymios Dardiotis 2 Lambros Messinis 3
Show affiliations
Received 2019-01-27, accepted for publication 2019-07-05, Published 2019-07-05

Communication in humans activates almost every part of the brain. Of course, the use of language predominates, but other cognitive functions such as attention, memory, emotion, and executive processes are also involved. However, in order to explain how our brain “understands,” “speaks,” and “writes,” and in order to rehabilitate aphasic disorders, neuroscience has faced the challenge for years to reveal the responsible neural networks. Broca and Wernicke (and Lichtheim and many others), during the 19th century, when brain research was mainly observational and autopsy driven, offered fundamental knowledge about the brain and language, so the Wernicke-Geschwind model appeared and aphasiology during the 20th century was based on it. This model is still useful for a first approach into the classical categorization of aphasic syndromes, but it is outdated, because it does not adequately describe the neural networks relevant for language, and it offers a modular perspective, focusing mainly on cortical structures. During the last three decades, neuroscience conquered new imaging, recording, and manipulation techniques for brain research, and a new model of the functional neuroanatomy of language was developed, the dual stream model, consisting of two interacting networks (“streams”), one ventral, bilaterally organized, for language comprehension, and one dorsal, left hemisphere dominant, for production. This new model also has its limitations but helps us to understand, among others, why patients with different brain lesions can have similar language impairments. Furthermore, interesting aspects arise from studying language functions in aging brains (and also in young, developing brains) and in cognitively impaired patients and neuromodulation effects on reorganization of brain networks subserving language. In this selective review, we discuss methods for coupling new knowledge regarding the functional reorganization of the brain with sophisticated techniques capable of activating the available supportive networks in order to provide improved neurorehabilitation strategies for people suffering from neurogenic communication disorders.


Copyright © 2019 Grigorios Nasios et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Grigorios Nasios.Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece, uoi.gr.grigoriosnasios@gmail.com


Grigorios Nasios,Efthymios Dardiotis,Lambros Messinis. From Broca and Wernicke to the Neuromodulation Era: Insights of Brain Language Networks for Neurorehabilitation. Behavioural Neurology ,Vol.2019(2019)



[1] S. Wortman-Jutt, D. J. Edwards. (2017). Transcranial direct current stimulation in poststroke aphasia recovery. Stroke.48(3):820-826. DOI: 10.1152/jn.00628.2006.
[2] C. J. Price. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage.62(2):816-847. DOI: 10.1152/jn.00628.2006.
[3] A. K. Martin, M. Meinzer, R. Lindenberg, M. M. Sieg. et al.(2017). Effects of transcranial direct current stimulation on neural networks in young and older adults. Journal of Cognitive Neuroscience.29(11):1817-1828. DOI: 10.1152/jn.00628.2006.
[4] C. J. Price. (2010). The anatomy of language: a review of 100 fMRI studies published in 2009. Annals of the New York Academy of Sciences.1191(1):62-88. DOI: 10.1152/jn.00628.2006.
[5] O. Sacks. (1985). The man who mistook his wife for a hat and other clinical tales. . DOI: 10.1152/jn.00628.2006.
[6] G. Hickok, D. Poeppel. (2004). Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition.92(1-2):67-99. DOI: 10.1152/jn.00628.2006.
[7] G. Hickok, D. Poeppel. (2007). The cortical organization of speech processing. Nature Reviews Neuroscience.8(5):393-402. DOI: 10.1152/jn.00628.2006.
[8] G. Hickok, D. Poeppel. (2015). Neural basis of speech perception. Handbook of Clinical Neurology.129:149-160. DOI: 10.1152/jn.00628.2006.
[9] P. E. Turkeltaub, H. B. Coslett, A. L. Thomas, O. Faseyitan. et al.(2012). The right hemisphere is not unitary in its role in aphasia recovery. Cortex.48(9):1179-1186. DOI: 10.1152/jn.00628.2006.
[10] V. Fiori, L. Kunz, P. Kuhnke, P. Marangolo. et al.(2018). Transcranial direct current stimulation (tDCS) facilitates verb learning by altering effective connectivity in the healthy brain. NeuroImage.181:550-559. DOI: 10.1152/jn.00628.2006.
[11] W. D. Heiss. (2016). Imaging effects related to language improvements by rTMS. Restorative Neurology and Neuroscience.34(4):531-536. DOI: 10.1152/jn.00628.2006.
[12] P. E. Turkeltaub, M. K. Swears, A. M. D’Mello, C. J. Stoodley. et al.(2016). Cerebellar tDCS as a novel treatment for aphasia? Evidence from behavioral and resting-state functional connectivity data in healthy adults. Restorative Neurology and Neuroscience.34(4):491-505. DOI: 10.1152/jn.00628.2006.
[13] K. Wernicke. (1874). Der aphasische Symptomencomplex: Eine psychologische Studie auf anatomischer Basis. DOI: 10.1152/jn.00628.2006.
[14] G. Nasios, L. Messinis, E. Dardiotis, P. Papathanasopoulos. et al.(2018). Repetitive transcranial magnetic stimulation, cognition, and multiple sclerosis: an overview. Behavioural Neurology.2018-8. DOI: 10.1152/jn.00628.2006.
[15] M. Kambanaros, L. Messinis, G. Nasios, A. Nousia. et al.(2017). Verb–noun dissociations in relapsing-remitting multiple sclerosis: verb effects of semantic complexity and phonological relatedness. Aphasiology.31(1):49-66. DOI: 10.1152/jn.00628.2006.
[16] N. Mohammed, V. Narayan, D. P. Patra, A. Nanda. et al.(2018). Historical vignette, Louis Victor Leborgne (“Tan”). World Neurosurgery.114:121-125. DOI: 10.1152/jn.00628.2006.
[17] P. Ilves, T. Tomberg, J. Kepler, R. Laugesaar. et al.(2014). Different plasticity patterns of language function in children with perinatal and childhood stroke. Journal of Child Neurology.29(6):756-764. DOI: 10.1152/jn.00628.2006.
[18] E. Bates, J. Reilly, B. Wulfeck, N. Dronkers. et al.(2001). Differential effects of unilateral lesions on language production in children and adults. Brain and Language.79(2):223-265. DOI: 10.1152/jn.00628.2006.
[19] P. P. Broca. (1861). Perte de la Parole, Ramollissement Chronique et Destruction Partielle du Lobe Antérieur Gauche du Cerveau. Bulletin de la Société Anthropologique.2:235-238. DOI: 10.1152/jn.00628.2006.
[20] N. F. Dronkers, O. Plaisant, M. T. Iba-Zizen, E. A. Cabanis. et al.(2007). Paul Broca’s historic cases: high resolution MR imaging of the brains of Leborgne and Lelong. Brain.130(5):1432-1441. DOI: 10.1152/jn.00628.2006.
[21] K. Lidzba, E. Schwilling, W. Grodd, I. Krägeloh-Mann. et al.(2011). Language comprehension vs. language production: age effects on fMRI activation. Brain and Language.119(1):6-15. DOI: 10.1152/jn.00628.2006.
[22] E. Fedorenko, J. Duncan, N. Kanwisher. (2012). Language-selective and domain-general regions lie side by side within Broca’s area. Current Biology.22(21):2059-2062. DOI: 10.1152/jn.00628.2006.
[23] R. Behroozmand, K. Johari, R. M. Kelley, E. C. Kapnoula. et al.(2019). Effect of deep brain stimulation on vocal motor control mechanisms in Parkinson’s disease. Parkinsonism & Related Disorders. DOI: 10.1152/jn.00628.2006.
[24] P. Trembley, A. S. Dick. (2016). Broca and Wernicke are dead, or moving past the classic model of language neurobiology. Brain and Language.162:60-71. DOI: 10.1152/jn.00628.2006.
[25] E. F. Chang, K. P. Raygor, M. S. Berger. (2015). Contemporary model of language organization: an overview for neurosurgeons. Journal of Neurosurgery.122(2):250-261. DOI: 10.1152/jn.00628.2006.
[26] M. M. Mesulam, C. K. Thompson, S. Weintraub, E. J. Rogalski. et al.(2015). The Wernicke conundrum and the anatomy of language comprehension in primary progressive aphasia. Brain.138(8):2423-2437. DOI: 10.1152/jn.00628.2006.
[27] S. Agarwal, E. A. Stamatakis, S. Geva, E. A. Warburton. et al.(2016). Dominant hemisphere functional networks compensate for structural connectivity loss to preserve phonological retrieval with aging. Brain and Behavior.6(9, article e00495). DOI: 10.1152/jn.00628.2006.
[28] C. Grady. (2012). The cognitive neuroscience of ageing. Nature Reviews Neuroscience.13(7):491-505. DOI: 10.1152/jn.00628.2006.
[29] M. Haghighi, M. Mazdeh, N. Ranjbar, M. A. Seifrabie. et al.(2017). Further evidence of the positive influence of repetitive transcranial magnetic stimulation on speech and language in patients with aphasia after stroke: results from a double-blind intervention with sham condition. Neuropsychobiology.75(4):185-192. DOI: 10.1152/jn.00628.2006.
[30] A. G. Huth, W. A. De Heer, T. L. Griffiths, F. E. Theunissen. et al.(2016). Natural speech reveals the semantic maps that tile human cerebral cortex. Nature.532(7600):453-458. DOI: 10.1152/jn.00628.2006.
[31] D. Poeppel, G. Hickok. (2004). Towards a new functional anatomy of language. Cognition.92(1-2):1-12. DOI: 10.1152/jn.00628.2006.
[32] C. L. Grady, G. Luk, F. I. M. Craik, E. Bialystok. et al.(2015). Brain network activity in monolingual and bilingual older adults. Neuropsychologia.66:170-181. DOI: 10.1152/jn.00628.2006.
[33] B. T. Gold. (2015). Lifelong bilingualism and neural reserve against Alzheimer’s disease: a review of findings and potential mechanisms. Behavioural Brain Research.281:9-15. DOI: 10.1152/jn.00628.2006.
[34] C. L. Ren, G. F. Zhang, N. Xia, C. H. Jin. et al.(2014). Effect of low-frequency rTMS on aphasia in stroke patients: a meta-analysis of randomized controlled trials. PLoS One.9(7, article e102557). DOI: 10.1152/jn.00628.2006.
[35] A. Wingfield, M. Grossman. (2006). Language and the aging brain: patterns of neural compensation revealed by functional brain imaging. Journal of Neurophysiology.96(6):2830-2839. DOI: 10.1152/jn.00628.2006.
[36] P. Hoffman, A. M. Morcom. (2018). Age-related changes in the neural networks supporting semantic cognition: a meta-analysis of 47 functional neuroimaging studies. Neuroscience and Biobehavioral Reviews.84:134-150. DOI: 10.1152/jn.00628.2006.
[37] D. Saur, R. Lange, A. Baumgaertner, V. Schraknepper. et al.(2006). Dynamics of language reorganization after stroke. Brain.129(6):1371-1384. DOI: 10.1152/jn.00628.2006.
[38] L. W. Barsalou. (2017). What does semantic tiling of the cortex tell us about semantics?. Neuropsychologia.105:18-38. DOI: 10.1152/jn.00628.2006.
[39] G. Nasios, L. Messinis. (2018). Neuroanatomy of language: new insights from lesioned and healthy brains. EC Neurology.10(5):343-345. DOI: 10.1152/jn.00628.2006.
[40] M. A. Shafto, L. K. Tyler. (2014). Language in the aging brain: the network dynamics of cognitive decline and preservation. Science.346(6209):583-587. DOI: 10.1152/jn.00628.2006.
[41] P. P. Shah-Basak, R. Wurzman, J. B. Purcell, F. Gervits. et al.(2016). Fields or flows? A comparative meta-analysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restorative Neurology and Neuroscience.34(4):537-558. DOI: 10.1152/jn.00628.2006.
[42] H. J. De Smet, P. Paquier, J. Verhoeven, P. Mariën. et al.(2013). The cerebellum: its role in language and related cognitive and affective functions. Brain and Language.127(3):334-342. DOI: 10.1152/jn.00628.2006.
[43] K. Lidzba, B. de Haan, M. Wilke, I. Krägeloh-Mann. et al.(2017). Lesion characteristics driving right-hemispheric language reorganization in congenital left-hemispheric brain damage. Brain and Language.173:1-9. DOI: 10.1152/jn.00628.2006.
[44] G. Hickok, S. L. Small. (2016). Neurobiology of Language. DOI: 10.1152/jn.00628.2006.
[45] P. Marangolo. (2017). The potential effects of transcranial direct current stimulation (tDCS) on language functioning: combining neuromodulation and behavioral intervention in aphasia. Neuroscience Letters. DOI: 10.1152/jn.00628.2006.
[46] R. Sebastian, K. Tsapkini, D. C. Tippett. (2016). Transcranial direct current stimulation in post stroke aphasia and primary progressive aphasia: current knowledge and future clinical applications. NeuroRehabilitation.39(1):141-152. DOI: 10.1152/jn.00628.2006.
[47] M. C. Brady, H. Kelly, J. Godwin, P. Enderby. et al.(2012). Speech and language therapy for aphasia following stroke. Cochrane Database of Systematic Reviews.5, article CD000425. DOI: 10.1152/jn.00628.2006.
[48] M. Sandars, L. Cloutman, A. M. Woollams. (2016). Taking sides: an integrative review of the impact of laterality and polarity on efficacy of therapeutic transcranial direct current stimulation for anomia in chronic poststroke aphasia. Neural Plasticity.2016-21. DOI: 10.1152/jn.00628.2006.
[49] X. Guell, J. D. E. Gabrieli, J. D. Schmahmann. (2018). Triple representation of language, working memory, social and emotion processing in the cerebellum: convergent evidence from task and seed-based resting-state fMRI analyses in a single large cohort. NeuroImage.172:437-449. DOI: 10.1152/jn.00628.2006.
[50] P. Mariën, R. Borgatti. (2018). Language and the cerebellum. Handbook of Clinical Neurology.154:181-202. DOI: 10.1152/jn.00628.2006.
[51] P. E. Turkeltaub, S. Messing, C. Norise, R. H. Hamilton. et al.(2011). Are networks for residual language function and recovery consistent across aphasic patients?. Neurology.76(20):1726-1734. DOI: 10.1152/jn.00628.2006.
[52] G. Nasios, L. Messinis. (2018). Brain functional reorganization after stroke: what has recovery from aphasia taught us?. EC Neurology.10(7):584-586. DOI: 10.1152/jn.00628.2006.
[53] R. H. Hamilton, E. G. Chrysikou, B. Coslett. (2011). Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang.118(1-2):40-50. DOI: 10.1152/jn.00628.2006.
[54] R. E. Jorge, L. Acion, D. Moser, H. P. Adams. et al.(2010). Escitalopram and enhancement of cognitive recovery following stroke. Archives of General Psychiatry.67(2):187-196. DOI: 10.1152/jn.00628.2006.
[55] T. Barlow. (1877). On a case of double hemiplegia, with cerebral symmetrical lesions. British Medical Journal.2(865):103-104. DOI: 10.1152/jn.00628.2006.
[56] R. Holland, A. P. Leff, O. Josephs, J. M. Galea. et al.(2011). Speech facilitation by left inferior frontal cortex stimulation. Current Biology.21(16):1403-1407. DOI: 10.1152/jn.00628.2006.
[57] D. Kümmerer, G. Hartwigsen, P. Kellmeyer, V. Glauche. et al.(2013). Damage to ventral and dorsal language pathways in acute aphasia. Brain.136(2):619-629. DOI: 10.1152/jn.00628.2006.
[58] Z. Z. Yu, S. J. Jiang, S. Bi, J. Li. et al.(2013). Relationship between linguistic functions and cognitive functions in a clinical study of Chinese patients with post-stroke aphasia. Chinese Medical Journal.126(7):1252-1256. DOI: 10.1152/jn.00628.2006.
[59] D. Saur, B. W. Kreher, S. Schnell, D. Kummerer. et al.(2008). Ventral and dorsal pathways for language. Proceedings of the National Academy of Sciences of the United States of America.105(46):18035-18040. DOI: 10.1152/jn.00628.2006.
[60] A. E. Hillis, Y. Y. Beh, R. Sebastian, B. Breining. et al.(2018). Predicting recovery in acute poststroke aphasia. Annals of Neurology.83(3):612-622. DOI: 10.1152/jn.00628.2006.
[61] M. Meinzer, R. Lindenberg, D. Antonenko, T. Flaisch. et al.(2013). Anodal transcranial direct current stimulation temporarily reverses age-associated cognitive decline and functional brain activity changes. The Journal of Neuroscience.33(30):12470-12478. DOI: 10.1152/jn.00628.2006.
[62] D. Cahana-Amitay, M. L. Albert, A. Oveis. (2013). Psycholinguistics of aphasia pharmacotherapy: asking the right questions. Aphasiology.28(2):133-154. DOI: 10.1152/jn.00628.2006.
[63] G. Hartwigsen. (2016). Adaptive plasticity in the healthy language network: implications for language recovery after stroke. Neural Plasticity.2016-18. DOI: 10.1152/jn.00628.2006.
[64] D. Mirman, Q. Chen, Y. Zhang, Z. Wang. et al.(2015). Neural organization of spoken language revealed by lesion–symptom mapping. Nature Communications.6(1):6762. DOI: 10.1152/jn.00628.2006.
[65] J. Fridriksson, D. B. den Ouden, A. E. Hillis, G. Hickok. et al.(2018). Anatomy of aphasia revisited. Brain.141(3):848-862. DOI: 10.1152/jn.00628.2006.
[66] B. Lee, S. B. Pyun. (2014). Characteristics of cognitive impairment in patients with post-stroke aphasia. Annals of Rehabilitation Medicine.38(6):759-765. DOI: 10.1152/jn.00628.2006.
[67] F. Chollet, J. Tardy, J.-F. Albucher, C. Thalamas. et al.(2011). Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. The Lancet Neurology.10(2):123-130. DOI: 10.1152/jn.00628.2006.
[68] A. Thiel, A. Zumbansen. (2016). The pathophysiology of post-stroke aphasia: a network approach. Restorative Neurology and Neuroscience.34(4):507-518. DOI: 10.1152/jn.00628.2006.
[69] D. Cahana-Amitay, M. Albert. (2015). Redefining recovery from aphasia. DOI: 10.1152/jn.00628.2006.
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次