首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-24
Histological Analysis of Bone Repair in Mandibular Body Osteotomy Using Internal Fixation System in Three Different Gaps without Bone Graft in an Animal Model
Research Article
Sergio Olate 1 , 2 Bélgica Vásquez 3 Cristian Sandoval 2 , 4 Adriana Vasconcellos 5 Juan Pablo Alister 1 , 2 Mariano del Sol 2
Show affiliations
DOI:10.1155/2019/8043510
Received 2019-03-24, accepted for publication 2019-06-24, Published 2019-06-24
PDF
摘要

The aim was to analyze histologically the bone repair in a mandibular osteotomy model with different gaps between the segments. Nine male rabbits who underwent osteotomies on the mandibular body were fixed with a 1.5 system plate and no bone graft; group 1 (2 mm gap between segments), group 2 (5 mm gap between segments), and group 3 (8 mm gap between segments) were included. After 8 weeks they were euthanized and the sample was processed for histological analysis. Group 1 showed advanced bone repair with cartilaginous tissue and cancellous bone, showing osteoblasts and type III collagenous fibers. In group 2, a more delayed ossification was observed, with an extensive area of peripheral ossifying cartilage and chondrocytes in greater number at the center of the defect; group 3 showed no evidence of ossification with fibrous tissue, a very low level of chondrocytes, and some bone sequestrate. We can conclude that, in this animal model, 2 or 5 mm gap in the osteotomy could be repaired as bone when fixation is used. The size of the gap is an important factor for the use of bone grafts considering endochondral ossification. This model can be used for graft analysis and related technologies.

授权许可

Copyright © 2019 Sergio Olate et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Bélgica Vásquez.Faculty of Health Sciences, Universidad de Tarapacá, Arica, Chile, uta.cl.bvasquezp@uta.cl

推荐引用方式

Sergio Olate,Bélgica Vásquez,Cristian Sandoval,Adriana Vasconcellos,Juan Pablo Alister,Mariano del Sol. Histological Analysis of Bone Repair in Mandibular Body Osteotomy Using Internal Fixation System in Three Different Gaps without Bone Graft in an Animal Model. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] N. A. Sims, C. P. White, K. L. Sunn, G. P. Thomas. et al.(1997). Human and murine osteocalcin gene expression: conserved tissue restricted expression and divergent responses to 1,25- dihydroxyvitamin D3 in vivo. Molecular Endocrinology.11(11):1695-1708. DOI: 10.1016/S0482-5985(06)74989-6.
[2] C. E. Sverzut, F. P. De Matos, A. E. Trivellato, R. B. Kato. et al.(2015). Histologic and histometric analysis of bone repair at the site of mandibular body osteotomy and at the bone-screw interface after using a biodegradable 2.0-mm internal fixation system. The Journal of Craniofacial Surgery.26(4):193-197. DOI: 10.1016/S0482-5985(06)74989-6.
[3] E. J. Mackie, Y. A. Ahmed, L. Tatarczuch, K.-S. Chen. et al.(2008). Endochondral ossification: How cartilage is converted into bone in the developing skeleton. The International Journal of Biochemistry & Cell Biology.40(1):46-62. DOI: 10.1016/S0482-5985(06)74989-6.
[4] D. M. Nunamaker. (1998). Experimental models of fracture repair. Clinical Orthopaedics and Related Research.355:S56-S65. DOI: 10.1016/S0482-5985(06)74989-6.
[5] M. Amling, L. Neff, S. Tanaka, D. Inoue. et al.(1997). Bcl-2 lies downstream of parathyroid hormone-related peptide in a signaling pathway that regulates chondrocyte maturation during skeletal development. The Journal of Cell Biology.136(1):205-213. DOI: 10.1016/S0482-5985(06)74989-6.
[6] P. Bianco, F. D. Cancedda, M. Riminucci, R. Cancedda. et al.(1998). Bone formation via cartilage models: the ‘borderline’ chondrocyte. Matrix Biology.17(3):185-192. DOI: 10.1016/S0482-5985(06)74989-6.
[7] M. Panteli, I. Pountos, E. Jones, P. V. Giannoudis. et al.(2015). Biological and molecular profile of fracture non-union tissue: current insights. Journal of Cellular and Molecular Medicine.19(4):685-713. DOI: 10.1016/S0482-5985(06)74989-6.
[8] H. M. Kronenberg. (2003). Developmental regulation of the growth plate. Nature.423(6937):332-336. DOI: 10.1016/S0482-5985(06)74989-6.
[9] F. Shapiro. (2008). Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. European Cells and Materials.15:53-76. DOI: 10.1016/S0482-5985(06)74989-6.
[10] J. Woodard, G. Donovan, L. Fisher. (1997). Pathogenesis of vitamin (A and D)-induced premature growth-plate closure in calves. Bone.21(2):171-182. DOI: 10.1016/S0482-5985(06)74989-6.
[11] Y. A. Ahmed, L. Tatarczuch, C. N. Pagel, H. M. S. Davies. et al.(2007). Physiological death of hypertrophic chondrocytes. Osteoarthritis and Cartilage.15(5):575-586. DOI: 10.1016/S0482-5985(06)74989-6.
[12] P. J. Wraighte, B. E. Scammell. (2007). Principles of fracture healing. Foundation Years.3(6):243-251. DOI: 10.1016/S0482-5985(06)74989-6.
[13] J. P. Alister, C. Veuthey, F. Uribe, B. Vásquez. et al.(2017). Modelo experimental para el estudio de la reconstrucción mandibular: opciones en conejos oryctolagus cuniculus. International Journal of Morphology.34(3):1185-1190. DOI: 10.1016/S0482-5985(06)74989-6.
[14] G. Karsenty. (2003). The complexities of skeletal biology. Nature.423(6937):316-318. DOI: 10.1016/S0482-5985(06)74989-6.
[15] S. Ricketts, H. S. Gill, J. A. Fialkov, D. B. Matic. et al.(2016). Facial fractures. Plastic and Reconstructive Surgery.137(2):424e-444e. DOI: 10.1016/S0482-5985(06)74989-6.
[16] H.-P. Gerber, T. H. Vu, A. M. Ryan, J. Kowalski. et al.(1999). VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation. Nature Medicine.5(6):623-628. DOI: 10.1016/S0482-5985(06)74989-6.
[17] R. Jahagirdar, B. E. Scammell. (2009). Principles of fracture healing and disorders of bone union. Surgery.27(2):63-69. DOI: 10.1016/S0482-5985(06)74989-6.
[18] C. J. Green, J. Knight, S. Precious, S. Simpkin. et al.(1981). Ketamine alone and combined with diazepam or xylazine in laboratory animals: a 10 year experience. Laboratory Animals.15(2):163-170. DOI: 10.1016/S0482-5985(06)74989-6.
[19] Y. Liu, B. R. Olsen. (2014). Distinct VEGF functions during bone development and homeostasis. Archivum Immunologiae et Therapia Experimentalis (Warsz).62(5):363-368. DOI: 10.1016/S0482-5985(06)74989-6.
[20] National Research Council. (2011). Guide for the Care and Use of Laboratory Animals. DOI: 10.1016/S0482-5985(06)74989-6.
[21] A. Delgado-Martínez, T. Alcántara-Martos. (2006). Agentes sistémicos que modifican la consolidación de las fracturas. Revista de Ortopedia y Traumatología.50:5-12. DOI: 10.1016/S0482-5985(06)74989-6.
[22] X. Wang, H. Xing, G. Zhang, X. Wu. et al.(2016). Restoration of a critical mandibular bone defect using human alveolar bone-derived stem cells and porous nano- HA/Collagen/PLA Scaffold. Stem Cells International.2016-13. DOI: 10.1016/S0482-5985(06)74989-6.
[23] H. C. Anderson, J. B. Sipe, L. Hessle, R. Dhamyamraju. et al.(2004). Impaired calcification around matrix vesicles of growth plate and bone in alkaline phosphatase-deficient mice. The American Journal of Pathology.164(3):841-847. DOI: 10.1016/S0482-5985(06)74989-6.
[24] J. P. Alister, F. Uribe, B. Vásquez, R. Fariña. et al.(2019). Characterization of bone substitute -TCP block for maxillofacial reconstruction. International Journal of Morphology.37(1):82-86. DOI: 10.1016/S0482-5985(06)74989-6.
[25] L. Yang, K. Y. Tsang, H. C. Tang, D. Chan. et al.(2014). Hypertrophic chondrocytes can become osteoblasts and osteocytes in endochondral bone formation. Proceedings of the National Acadamy of Sciences of the United States of America.111(33):12097-12102. DOI: 10.1016/S0482-5985(06)74989-6.
[26] A. Schindeler, M. M. McDonald, P. Bokko, D. G. Little. et al.(2008). Bone remodeling during fracture repair: the cellular picture. Seminars in Cell & Developmental Biology.19(5):459-466. DOI: 10.1016/S0482-5985(06)74989-6.
[27] X. Zhou, K. von der Mark, S. Henry, W. Norton. et al.(2014). Chondrocytes transdifferentiate into osteoblasts in endochondral bone during development, postnatal growth and fracture healing in mice. PLoS Genetics.10(12). DOI: 10.1016/S0482-5985(06)74989-6.
[28] M. Macki, S. Syeda, P. Kerezoudis, A. Bydon. et al.(2016). rhBMP-2 protects against reoperation for pseudoarthrosis and/or instrumentation failure: A matched case-control study of 448 patients. Journal of Clinical Neuroscience.32:99-103. DOI: 10.1016/S0482-5985(06)74989-6.
[29] N. Dirckx, M. Van Hul, C. Maes. (2013). Osteoblast recruitment to sites of bone formation in skeletal development, homeostasis, and regeneration. Birth Defects Research Part C: Embryo Today.99(3):170-191. DOI: 10.1016/S0482-5985(06)74989-6.
[30] E. C. Kruijt Spanjer, G. K. Bittermann, I. E. van Hooijdonk, A. J. Rosenberg. et al.(2017). Taking the endochondral route to craniomaxillofacial bone regeneration: a logical approach?. Journal of Cranio-Maxillo-Facial Surgery.45(7):1099-1106. DOI: 10.1016/S0482-5985(06)74989-6.
[31] B. C. Tee, K. G. H. Desai, K. S. Kennedy, B. Sonnichsen. et al.(2016). Reconstructing jaw defects with MSCs and PLGA-encapsulated growth factors. American Journal of Translational Research.8(6):2693-2704. DOI: 10.1016/S0482-5985(06)74989-6.
[32] E. Green, J. D. Lubahn, J. Evans. (2005). Risk factors, treatment, and outcomes associated with nonunion of the midshaft humerus fracture. Journal of Surgical Orthopaedic Advances.14(2):64-72. DOI: 10.1016/S0482-5985(06)74989-6.
[33] S. Lonie, P. Herle, A. Paddle, N. Pradhan. et al.(2016). Mandibular reconstruction: meta-analysis of iliac- versus fibula-free flaps. ANZ Journal of Surgery.86(5):337-342. DOI: 10.1016/S0482-5985(06)74989-6.
[34] R. Marsell, T. A. Einhorn. (2011). The biology of fracture healing. Injury.42(6):551-555. DOI: 10.1016/S0482-5985(06)74989-6.
[35] X. Duan, Y. Murata, Y. Liu, C. Nicolae. et al.(2015). Vegfa regulates perichondrial vascularity and osteoblast differentiation in bone development. Development.142(11):1984-1991. DOI: 10.1016/S0482-5985(06)74989-6.
[36] A. Torroni, T. M. Marianetti, M. Romandini, G. Gasparini. et al.(2015). Mandibular reconstruction with different techniques. The Journal of Craniofacial Surgery.26(3):885-890. DOI: 10.1016/S0482-5985(06)74989-6.
[37] L. C. Gerstenfeld, Y. M. Alkhiary, E. A. Krall, F. H. Nicholls. et al.(2006). Three-dimensional reconstruction of fracture callus morphogenesis. Journal of Histochemistry & Cytochemistry.54(11):1215-1228. DOI: 10.1016/S0482-5985(06)74989-6.
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次