首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-25
A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer
Review Article
Pan Huang 1 Yi Liu 1
Show affiliations
DOI:10.1155/2019/3405278
Received 2019-05-15, accepted for publication 2019-07-09, Published 2019-07-09
PDF
摘要

Colorectal cancer (CRC) is a multifactorial disease and the second leading cause of cancer death worldwide. The pathogenesis of colorectal cancer includes genetics, age, chronic inflammation, and lifestyle. Increasing attention has recently been paid to dietary factors. Evidence from epidemiological studies and clinical research suggests that high-fibre diets can significantly reduce the incidence of CRC, whilst the consumption of high-fat diets, high-protein diets, red meat, and processed meat is high-risk factors for tumorigenesis. Fibre is a regulator of intestinal microflora and metabolism and is thus a key dietary component for maintaining intestinal health. Intestinal microbes are closely linked to CRC, with the growth of certain microbiota (such as Fusobacterium nucleatum, Escherichia coli, or Bacteroides fragilis) favouring carcinogenesis, whilst the dominant microbiota population of the intestine, such as Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria, have multiple mechanisms of antitumour activity. Various dietary components have direct effects on the types of intestinal microflora: in the Western diet mode (high-fat, high-protein, and red meat), the proportion of conditional pathogens in the intestinal flora increases, the proportion of commensal bacteria decreases, and the occurrence of colorectal cancer is promoted. Conversely, a high-fibre diet can increase the abundance of Firmicutes and reduce the abundance of Bacteroides and consequently increase the concentration of short-chain fatty acids (SCFAs) in the intestine, inhibiting the development of CRC. This article reviews the study of the relationship between diet, intestinal microbes, and the promotion or inhibition of CRC and analyses the relevant molecular mechanisms to provide ideas for the prevention and treatment of CRC.

授权许可

Copyright © 2019 Pan Huang and Yi Liu. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yi Liu.Key Laboratory of Agro-Ecological Processes in Subtropical Regions and Taoyuan Station of Agro-Ecology Research, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China, cas.cn.liuyi@isa.ac.cn

推荐引用方式

Pan Huang,Yi Liu. A Reasonable Diet Promotes Balance of Intestinal Microbiota: Prevention of Precolorectal Cancer. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] A. F. Hofmann. (1999). The continuing importance of bile acids in liver and intestinal disease. JAMA Internal Medicine.159(22):2647-2658. DOI: 10.3322/caac.21551.
[2] R. Tayyem, H. Bawadi, I. Shehadah, S. Abu-Mweis. et al.(2015). Macro- and micronutrients consumption and the risk for colorectal cancer among jordanians. Nutrients.7(3):1769-1786. DOI: 10.3322/caac.21551.
[3] A. Cassidy, S. Bingham, J. Cummings. (1994). Starch intake and colorectal cancer risk: an international comparison. British Journal of Cancer.69(5):937-942. DOI: 10.3322/caac.21551.
[4] G. Liu, W. Yan, S. Ding, H. Jiang. et al.(2018). Effects of IRW and IQW on oxidative stress and gut microbiota in dextran sodium sulfate-induced colitis. Cellular Physiology and Biochemistry.51(1):441-451. DOI: 10.3322/caac.21551.
[5] T. Norat, A. Lukanova, P. Ferrari, E. Riboli. et al.(2002). Meat consumption and colorectal cancer risk: Dose-response meta-analysis of epidemiological studies. International Journal of Cancer.98(2):241-256. DOI: 10.3322/caac.21551.
[6] J. P. Zackular, N. T. Baxter, K. D. Iverson, W. D. Sadler. et al.(2013). The gut microbiome modulates colon tumorigenesis. mBio.4(6). DOI: 10.3322/caac.21551.
[7] A. D. Kostic, D. Gevers, C. S. Pedamallu, M. Michaud. et al.(2012). Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Research.22(2):292-298. DOI: 10.3322/caac.21551.
[8] Y. Zhu, T. Michelle Luo, C. Jobin, H. A. Young. et al.(2011). Gut microbiota and probiotics in colon tumorigenesis. Cancer Letters.309(2):119-127. DOI: 10.3322/caac.21551.
[9] J. Raisch, E. Buc, M. Bonnet. (2014). Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World Journal of Gastroenterology.20(21):6560-6572. DOI: 10.3322/caac.21551.
[10] J. M. Ridlon, D.-J. Kang, P. B. Hylemon. (2006). Bile salt biotransformations by human intestinal bacteria. Journal of Lipid Research.47(2):241-259. DOI: 10.3322/caac.21551.
[11] R. A. Koeth, Z. Wang, B. S. Levison, J. A. Buffa. et al.(2013). Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nature Medicine.19(5):576-585. DOI: 10.3322/caac.21551.
[12] H. Chen, Y. Yu, J. Wang, Y. Lin. et al.(2013). Decreased dietary fiber intake and structural alteration of gut microbiota in patients with advanced colorectal adenoma. American Journal of Clinical Nutrition.97(5):1044-1052. DOI: 10.3322/caac.21551.
[13] Z. Wang, E. Klipfell, B. J. Bennett, R. Koeth. et al.(2011). Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature.472(7341):57-65. DOI: 10.3322/caac.21551.
[14] C. L. Sears, W. S. Garrett. (2014). Microbes, microbiota, and colon cancer. Cell Host & Microbe.15(3):317-328. DOI: 10.3322/caac.21551.
[15] B. Flemer, D. B. Lynch, J. M. R. Brown, I. B. Jeffery. et al.(2017). Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut.66(4):633-643. DOI: 10.3322/caac.21551.
[16] W. H. W. Tang, Z. Wang, B. S. Levison, R. A. Koeth. et al.(2013). Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. The New England Journal of Medicine.368(17):1575-1584. DOI: 10.3322/caac.21551.
[17] C. J. Walsh, C. M. Guinane, P. W. O'Toole, P. D. Cotter. et al.(2014). Beneficial modulation of the gut microbiota. FEBS Letters.588(22):4120-4130. DOI: 10.3322/caac.21551.
[18] S. Ellmerich, M. Scholler, B. Duranton, F. Gosse. et al.(2000). Promotion of intestinal carcinogenesis by Streptococcus bovis. Carcinogenesis.21(4):753-756. DOI: 10.3322/caac.21551.
[19] S. Karunanithi, L. Levi. (2018). High-fat diet and colorectal cancer: myths and facts. Future Oncology.14(6):493-495. DOI: 10.3322/caac.21551.
[20] J. Zou, B. Chassaing, V. Singh, M. Pellizzon. et al.(2018). Fiber-mediated nourishment of gut microbiota protects against diet-induced obesity by restoring IL-22-mediated colonic health. Cell Host & Microbe.23(1):41-53 e44. DOI: 10.3322/caac.21551.
[21] H. Newmark, K. Yang, M. Lipkin, L. Kopelovich. et al.(2001). A Western-style diet induces benign and malignant neoplasms in the colon of normal C57Bl/6 mice. Carcinogenesis.22(11):1871-1875. DOI: 10.3322/caac.21551.
[22] S. E. Power, P. W. O'Toole, C. Stanton, R. P. Ross. et al.(2014). Intestinal microbiota, diet and health. British Journal of Nutrition.111(3):387-402. DOI: 10.3322/caac.21551.
[23] A. Wahlström, S. I. Sayin, H.-U. Marschall, F. Bäckhed. et al.(2016). Intestinal crosstalk between bile acids and microbiota and its impact on host metabolism. Cell Metabolism.24(1):41-50. DOI: 10.3322/caac.21551.
[24] A. Sasso, G. Latella. (2019). Role of heme iron in the association between red meat consumption and colorectal cancer. Nutrition and Cancer:1-11. DOI: 10.3322/caac.21551.
[25] S. Beyaz, M. D. Mana, J. Roper. (2016). High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature.531(7592):53-58. DOI: 10.3322/caac.21551.
[26] H. Tlaskalová-Hogenová, R. Tpánková, H. Kozáková, T. Hudcovic. et al.(2011). The role of gut microbiota (commensal bacteria) and the mucosal barrier in the pathogenesis of inflammatory and autoimmune diseases and cancer: Contribution of germ-free and gnotobiotic animal models of human diseases. Cellular & Molecular Immunology.8(2):110-120. DOI: 10.3322/caac.21551.
[27] M. Comalada, E. Bailón, O. De Haro, F. Lara-Villoslada. et al.(2006). The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. Journal of Cancer Research and Clinical Oncology.132(8):487-497. DOI: 10.3322/caac.21551.
[28] D. R. Donohoe, N. Garge, X. Zhang, W. Sun. et al.(2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metabolism.13(5):517-526. DOI: 10.3322/caac.21551.
[29] L. M. Butler. (2003). Heterocyclic amines, meat intake, and association with colon cancer in a population-based study. American Journal of Epidemiology.157(5):434-445. DOI: 10.3322/caac.21551.
[30] Y. Higashimura, Y. Naito, T. Takagi, K. Uchiyama. et al.(2016). Protective effect of agaro-oligosaccharides on gut dysbiosis and colon tumorigenesis in high-fat diet-fed mice. American Journal of Physiology-Gastrointestinal and Liver Physiology.310(6):G367-G375. DOI: 10.3322/caac.21551.
[31] S. Ognjanovic, J. Yamamoto, G. Maskarinec, L. L. Marchand. et al.(2006). NAT2, meat consumption and colorectal cancer incidence: An ecological study among 27 countries. Cancer Causes & Control.17(9):1175-1182. DOI: 10.3322/caac.21551.
[32] Y. Ma, S. Ding, G. Liu, J. Fang. et al.(2019). Egg protein transferrin-derived peptides IRW and IQW regulate citrobacter rodentium-induced, inflammation-related microbial and metabolomic profiles. Frontiers in Microbiology.10:643. DOI: 10.3322/caac.21551.
[33] V. Bouvard, D. Loomis, K. Z. Guyton, Y. Grosse. et al.(2015). Carcinogenicity of consumption of red and processed meat. The Lancet Oncology.16(16):1599-1600. DOI: 10.3322/caac.21551.
[34] R. Xu, Q. Wang, L. Li. (2015). A genome-wide systems analysis reveals strong link between colorectal cancer and trimethylamine N-oxide (TMAO), a gut microbial metabolite of dietary meat and fat. BMC Genomics.16(S7, article no. S4). DOI: 10.3322/caac.21551.
[35] G. Nakatsu, X. Li, H. Zhou, J. Sheng. et al.(2015). Gut mucosal microbiome across stages of colorectal carcinogenesis. Nature Communications.6(1). DOI: 10.3322/caac.21551.
[36] D. Kohoutova, D. Smajs, P. Moravkova, J. Cyrany. et al.(2014). Escherichia colistrains of phylogenetic group B2 and D and bacteriocin production are associated with advanced colorectal neoplasia. BMC Infectious Diseases.14(1, article no. 733). DOI: 10.3322/caac.21551.
[37] I. Sobhani, J. Tap, F. Roudot-Thoraval, J. P. Roperch. et al.(2011). Microbial dysbiosis in colorectal cancer (CRC) patients. Plos One.6(1). DOI: 10.3322/caac.21551.
[38] X. Gao, X. Liu, J. Xu, C. Xue. et al.(2014). Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. Journal of Bioscience and Bioengineering.118(4):476-481. DOI: 10.3322/caac.21551.
[39] D. E. Corpet. (2011). Red meat and colon cancer: should we become vegetarians, or can we make meat safer?. Meat Science.89(3):310-316. DOI: 10.3322/caac.21551.
[40] J. Ahn, R. Sinha, Z. Pei. (2013). Human gut microbiome and risk for colorectal cancer. JNCI Journal of the National Cancer Institute.105(24):1907-1911. DOI: 10.3322/caac.21551.
[41] G. Zeller, J. Tap, A. Y. Voigt. (2015). Potential of fecal microbiota for early-stage detection of colorectal cancer. Molecular Systems Biology.10(11):766. DOI: 10.3322/caac.21551.
[42] J. C. Arthur, E. Perez-Chanona, M. Mühlbauer, S. Tomkovich. et al.(2012). Intestinal inflammation targets cancer-inducing activity of the microbiota. Science.338(6103):120-123. DOI: 10.3322/caac.21551.
[43] S. Ding, G. Liu, H. Jiang, J. Fang. et al.(2019). MicroRNA determines the fate of intestinal epithelial cell differentiation and regulates intestinal diseases. Current Protein & Peptide Science.20(7):666-673. DOI: 10.3322/caac.21551.
[44] T. Menzel, J. Schauber, F. Kreth, T. Kudlich. et al.(2002). Butyrate and aspirin in combination have an enhanced effect on apoptosis in human colorectal cancer cells. European Journal of Cancer Prevention.11(3):271-281. DOI: 10.3322/caac.21551.
[45] S. J. D. O'Keefe. (2016). Diet, microorganisms and their metabolites, and colon cancer. Nature Reviews Gastroenterology & Hepatology.13(12):691-706. DOI: 10.3322/caac.21551.
[46] L. S. Wang, Y. W. Huang, G. D. Stoner, J. F. Lechner. et al.(2012). Gene-diet interactions on colorectal cancer risk. Current Nutrition Reports.1(3):132-141. DOI: 10.3322/caac.21551.
[47] E. Giovannucci, B. Goldin. (1997). The role of fat, fatty acids, and total energy intake in the etiology of human colon cancer. American Journal of Clinical Nutrition.66(6):1564S-1571S. DOI: 10.3322/caac.21551.
[48] M. Lipkin, B. Reddy, H. Newmark, S. A. Lamprecht. et al.(1999). Dietary factors in human colorectal cancer. Annual Review of Nutrition.19(1):545-586. DOI: 10.3322/caac.21551.
[49] C. C. Lim, L. R. Ferguson, G. W. Tannock. (2005). Dietary fibres as “prebiotics”: implications for colorectal cancer. Molecular Nutrition & Food Research.49(6):609-619. DOI: 10.3322/caac.21551.
[50] L. Niederreiter, T. E. Adolph, H. Tilg. (2018). Food, microbiome and colorectal cancer. Digestive and Liver Disease.50(7):647-652. DOI: 10.3322/caac.21551.
[51] B. S. Drasar, D. Irving. (1973). Environmental factors and cancer of the colon and breast. British Journal of Cancer.27(2):167-172. DOI: 10.3322/caac.21551.
[52] H. Tilg, T. E. Adolph, R. R. Gerner, A. R. Moschen. et al.(2018). The intestinal microbiota in colorectal cancer. Cancer Cell.33(6):954-964. DOI: 10.3322/caac.21551.
[53] N. Hashemi Goradel, S. Heidarzadeh, S. Jahangiri, B. Farhood. et al.(2018). and colorectal cancer: A mechanistic overview. Journal of Cellular Physiology.234(3):2337-2344. DOI: 10.3322/caac.21551.
[54] Q. Feng, S. Liang, H. Jia. (2015). Gut microbiome development along the colorectal adenoma-carcinoma sequence. Nature Communications.6:6528. DOI: 10.3322/caac.21551.
[55] M. Fukata, A. Chen, A. S. Vamadevan, J. Cohen. et al.(2007). Toll-like receptor-4 promotes the development of colitis-associated colorectal tumors. Gastroenterology.133(6):1869.e2-1881.e2. DOI: 10.3322/caac.21551.
[56] L. Flanagan, J. Schmid, M. Ebert, P. Soucek. et al.(2014). Fusobacterium nucleatum associates with stages of colorectal neoplasia development, colorectal cancer and disease outcome. European Journal of Clinical Microbiology & Infectious Diseases.33(8):1381-1390. DOI: 10.3322/caac.21551.
[57] T. J. Key, N. E. Allen, E. A. Spencer, R. C. Travis. et al.(2002). The effect of diet on risk of cancer. The Lancet.360(9336):861-868. DOI: 10.3322/caac.21551.
[58] K. Wakai, C. Date, M. Fukui. (2007). Dietary fiber and risk of colorectal cancer in the Japan collaborative cohort study. Cancer Epidemiology, Biomarkers & Prevention.16(4):668-675. DOI: 10.3322/caac.21551.
[59] M. Song, A. T. Chan. (2019). Environmental factors, gut microbiota, and colorectal cancer prevention. Clinical Gastroenterology and Hepatology.17(2):275-289. DOI: 10.3322/caac.21551.
[60] M. Castellarin, R. L. Warren, J. D. Freeman, L. Dreolini. et al.(2012). Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Research.22(2):299-306. DOI: 10.3322/caac.21551.
[61] C. M. Lasko, R. P. Bird. (1995). Modulation of aberrant crypt foci by dietary fat and caloric restriction: the effects of delayed intervention. Cancer Epidemiology, Biomarkers & Prevention: A Publication of The American Association for Cancer Research, Cosponsored by the American Society of Preventive Oncology.4(1):49. DOI: 10.3322/caac.21551.
[62] T. Requena, M. C. Martinez-Cuesta, C. Pelaez. (2018). Diet and microbiota linked in health and disease. Food & Function.9(2):688-704. DOI: 10.3322/caac.21551.
[63] T. F. Imperiale, P. R. Abhyankar, T. E. Stump, T. W. Emmett. et al.(2018). Prevalence of advanced, precancerous colorectal neoplasms in black and white populations: a systematic review and meta-analysis. Gastroenterology.155(6):1776-1786 e1771. DOI: 10.3322/caac.21551.
[64] M. J. Hill. (1998). Cereals, cereal fibre and colorectal cancer risk. European Journal of Cancer Prevention.7(2):S5-10. DOI: 10.3322/caac.21551.
[65] R. Burcelin. (2017). When gut fermentation controls satiety: A PYY story. Molecular Metabolism.6(1):10-11. DOI: 10.3322/caac.21551.
[66] F. Bray, J. Ferlay, I. Soerjomataram. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians.68(6):394-424. DOI: 10.3322/caac.21551.
[67] O. Gregor, R. Toman, F. Prusova. (1969). Gastrointestinal cancer and nutrition. Gut.10(12):1031-1034. DOI: 10.3322/caac.21551.
[68] R. L. Siegel, K. D. Miller, A. Jemal. (2019). Cancer statistics, 2019. CA: A Cancer Journal for Clinicians.69(1):7-34. DOI: 10.3322/caac.21551.
[69] J. H. Cummings, H. S. Wiggins, D. J. A. Jenkins, H. Houston. et al.(1978). Influence of diets high and low in animal fat on bowel habit, gastrointestinal transit time, fecal microflora, bile acid, and fat excretion. The Journal of Clinical Investigation.61(4):953-963. DOI: 10.3322/caac.21551.
[70] E. L. Wynder, T. Shigematsu. (1967). Environmental factors of cancer of the colon and rectum. Cancer.20(9):1520-1561. DOI: 10.3322/caac.21551.
[71] A. Boleij, E. M. Hechenbleikner, A. C. Goodwin, R. Badani. et al.(2015). The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clinical Infectious Diseases.60(2):208-215. DOI: 10.3322/caac.21551.
[72] K. Wakai, K. Hirose, K. Matsuo, H. Ito. et al.(2006). Dietary risk factors for colon and rectal cancers: a comparative case-control study. Journal of Epidemiology.16(3):125-135. DOI: 10.3322/caac.21551.
[73] C. L. Sears, A. L. Geis, F. Housseau. (2014). Bacteroides fragilis subverts mucosal biology: from symbiont to colon carcinogenesis. The Journal of Clinical Investigation.124(10):4166-4172. DOI: 10.3322/caac.21551.
[74] D. P. Burkitt. (1971). Some neglected leads to cancer causation. JNCI: Journal of the National Cancer Institute.47(5):913-919. DOI: 10.3322/caac.21551.
[75] S. O. Fetissov. (2017). Role of the gut microbiota in host appetite control: bacterial growth to animal feeding behaviour. Nature Reviews Endocrinology.13(1):11-25. DOI: 10.3322/caac.21551.
[76] S. A. Bingham, N. E. Day, R. Luben. (2003). Dietary fibre in food and protection against colorectal cancer in the European Prospective Investigation into Cancer and Nutrition (EPIC): an observational study. The Lancet.361(9368):1496-1501. DOI: 10.3322/caac.21551.
[77] C. L. Sears. (2009). Enterotoxigenic : a rogue among symbiotes. Clinical Microbiology Reviews.22(2):349-369. DOI: 10.3322/caac.21551.
[78] C. Ramirez-Farias, K. Slezak, Z. Fuller, A. Duncan. et al.(2009). Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii. British Journal of Nutrition.101(4):541-550. DOI: 10.3322/caac.21551.
[79] V. Tremaroli, F. Bäckhed. (2012). Functional interactions between the gut microbiota and host metabolism. Nature.489(7415):242-249. DOI: 10.3322/caac.21551.
[80] T. Narisawa, N. E. Magadia, J. H. Weisburger, E. L. Wynder. et al.(1974). Promoting effect of bile acids on colon carcinogenesis after intrarectal instillation of n-methyl-n′ nitro-n-nitrosoguanidine in rats2. JNCI: Journal of the National Cancer Institute.53(4):1093-1097. DOI: 10.3322/caac.21551.
[81] K. I. Block, P. B. Block, C. Gyllenhaal. (2018). Integrative treatment for colorectal cancer: a comprehensive approach. The Journal of Alternative and Complementary Medicine.24(9-10):890-901. DOI: 10.3322/caac.21551.
[82] P. M. Smith, M. R. Howitt, N. Panikov, M. Michaud. et al.(2013). The microbial metabolites, short-chain fatty acids, regulate colonic T reg cell homeostasis. Science.341(6145):569-573. DOI: 10.3322/caac.21551.
[83] W. C. Willett, M. J. Stampfer, G. A. Colditz, B. A. Rosner. et al.(1990). Relation of meat, fat, and fiber intake to the risk of colon cancer in a prospective study among women. The New England Journal of Medicine.323(24):1664-1672. DOI: 10.3322/caac.21551.
[84] J. E. Wells, P. B. Hylemon. (2000). Identification and characterization of a bile acid 7-dehydroxylation operon in Clostridium sp. strain TO-931, a highly active 7-dehydroxylating strain isolated from human feces. Applied and Environmental Microbiology.66(3):1107-1113. DOI: 10.3322/caac.21551.
[85] A. Kostic, E. Chun, L. Robertson, J. Glickman. et al.(2013). Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host & Microbe.14(2):207-215. DOI: 10.3322/caac.21551.
[86] R. L. Siegel, S. A. Fedewa, W. F. Anderson, K. D. Miller. et al.(2017). Colorectal cancer incidence patterns in the United States, 1974–2013. JNCI: Journal of the National Cancer Institute.109(8). DOI: 10.3322/caac.21551.
[87] C. Bernstein, H. Holubec, A. K. Bhattacharyya, H. Nguyen. et al.(2011). Carcinogenicity of deoxycholate, a secondary bile acid. Archives of Toxicology.85(8):863-871. DOI: 10.3322/caac.21551.
[88] B. A. Weinberg, J. L. Marshall. (2019). Colon cancer in young adults: trends and their implications. Current Oncology Reports.21(1):3. DOI: 10.3322/caac.21551.
[89] N. U. Toprak, A. Yagci, B. M. Gulluoglu, M. L. Akin. et al.(2006). A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clinical Microbiology and Infection.12(8):782-786. DOI: 10.3322/caac.21551.
[90] K. R. Silvester, J. H. Cummings. (1995). Does digestibility of meat protein help explain large bowel cancer risk?. Nutrition and Cancer.24(3):279-288. DOI: 10.3322/caac.21551.
[91] J. Y. Huang, S. M. Lee, S. K. Mazmanian. (2011). The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe.17(4):137-141. DOI: 10.3322/caac.21551.
[92] C. Basset, J. Holton, A. Bazeos, D. Vaira. et al.(2004). Are helicobacter species and enterotoxigenic bacteroides fragilis involved in inflammatory bowel disease?. Digestive Diseases and Sciences.49(9):1425-1432. DOI: 10.3322/caac.21551.
[93] K. Maćkowiak, N. Torlińska-Walkowiak, B. Torlińska. (2016). Dietary fibre as an important constituent of the diet. Postepy Higieny i Medycyny Doswiadczalnej.70:104-109. DOI: 10.3322/caac.21551.
[94] K. Windey, V. de Preter, K. Verbeke. (2012). Relevance of protein fermentation to gut health. Molecular Nutrition & Food Research.56(1):184-196. DOI: 10.3322/caac.21551.
[95] G. Macfarlane, G. Gibson, J. Cummings. (1992). Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology.72(1):57-64. DOI: 10.3322/caac.21551.
[96] S. Ghoshal, J. Witta, J. Zhong, W. de Villiers. et al.(2009). Chylomicrons promote intestinal absorption of lipopolysaccharides. Journal of Lipid Research.50(1):90-97. DOI: 10.3322/caac.21551.
[97] M. H. Floch. (2011). Intestinal microecology in health and wellness. Journal of Clinical Gastroenterology.45:S108-S110. DOI: 10.3322/caac.21551.
[98] S. J. O'Keefe, J. V. Li, L. Lahti. (2015). Fat, fibre and cancer risk in African Americans and rural Africans. Nature Communications.6:6342. DOI: 10.3322/caac.21551.
[99] M. D. Schulz, Ç. Atay, J. Heringer, F. K. Romrig. et al.(2014). High-fat-diet-mediated dysbiosis promotes intestinal carcinogenesis independently of obesity. Nature.514(7253):508-512. DOI: 10.3322/caac.21551.
[100] K. Wang, M. Karin. (2014). Common flora and intestine. Cellular Logistics.3(2). DOI: 10.3322/caac.21551.
[101] P. De Boever, R. Wouters, L. Verschaeve, P. Berckmans. et al.(2000). Protective effect of the bile salt hydrolase-active Lactobacillus renteri against bile salt cytotoxicity. Applied Microbiology and Biotechnology.53(6):709-714. DOI: 10.3322/caac.21551.
[102] P. R. Kvietys, R. D. Specian, M. B. Grisham, P. Tso. et al.(1992). Jejunal mucosal injury and restitution: role of hydrolytic products of food digestion. Jpen Journal of Parenteral & Enteral Nutrition.16(4):396. DOI: 10.3322/caac.21551.
[103] N. M. Koropatkin, E. A. Cameron, E. C. Martens. (2012). How glycan metabolism shapes the human gut microbiota. Nature Reviews Microbiology.10(5):323-335. DOI: 10.3322/caac.21551.
[104] Y. Kim, D. Lee, D. Kim. (2008). Inhibition of proliferation in colon cancer cell lines and harmful enzyme activity of colon bacteria by Bifidobacterium adolescentis SPM0212. Archives of Pharmacal Research.31(4):468-473. DOI: 10.3322/caac.21551.
[105] A. Agus, J. Denizot, J. Thévenot, M. Martinez-Medina. et al.(2016). Western diet induces a shift in microbiota composition enhancing susceptibility to Adherent-Invasive infection and intestinal inflammation. Scientific Reports.6. DOI: 10.3322/caac.21551.
[106] M. Andriamihaja, A. Davila, M. Eklou-Lawson, N. Petit. et al.(2010). Colon luminal content and epithelial cell morphology are markedly modified in rats fed with a high-protein diet. American Journal of Physiology-Gastrointestinal and Liver Physiology.299(5):G1030-G1037. DOI: 10.3322/caac.21551.
[107] E. L. Ma, Y. J. Choi, J. Choi, C. Pothoulakis. et al.(2010). The anticancer effect of probiotic Bacillus polyfermenticus on human colon cancer cells is mediated through ErbB2 and ErbB3 inhibition. International Journal of Cancer.127(11):780-790. DOI: 10.3322/caac.21551.
[108] Z. Sun, L. Liu, P. P. Wang, B. Roebothan. et al.(2012). Association of total energy intake and macronutrient consumption with colorectal cancer risk: results from a large population-based case-control study in Newfoundland and Labrador and Ontario, Canada. Nutrition Journal.11(1, article 18). DOI: 10.3322/caac.21551.
[109] T. Yamaji, M. Iwasaki, S. Sasazuki, H. Sakamoto. et al.(2009). Methionine synthase A2756G polymorphism interacts with alcohol and folate intake to influence the risk of colorectal adenoma. Cancer Epidemiology, Biomarkers & Prevention.18(1):267-274. DOI: 10.3322/caac.21551.
[110] M. Martinez-Medina, J. Denizot, N. Dreux, F. Robin. et al.(2014). Western diet induces dysbiosis with increased in CEABAC10 mice, alters host barrier function favouring AIEC colonisation. Gut.63(1):116-124. DOI: 10.3322/caac.21551.
[111] X. Guo, X. Xia, R. Tang, J. Zhou. et al.(2008). Development of a real-time PCR method for Firmicutes and Bacteroidetes in faeces and its application to quantify intestinal population of obese and lean pigs. Letters in Applied Microbiology.47(5):367-373. DOI: 10.3322/caac.21551.
[112] C. de Filippo, D. Cavalieri, M. di Paola, M. Ramazzotti. et al.(2010). Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proceedings of the National Acadamy of Sciences of the United States of America.107(33):14691-14696. DOI: 10.3322/caac.21551.
[113] J. Yang, J. Yu. (2018). The association of diet, gut microbiota and colorectal cancer: what we eat may imply what we get. Protein & Cell.9(5):474-487. DOI: 10.3322/caac.21551.
[114] T. Taira, S. Yamaguchi, A. Takahashi, Y. Okazaki. et al.(2015). Dietary polyphenols increase fecal mucin and immunoglobulin A and ameliorate the disturbance in gut microbiota caused by a high fat diet. Journal of Clinical Biochemistry and Nutrition.57(3):212-216. DOI: 10.3322/caac.21551.
[115] E. Viggiano, M. P. Mollica, L. Lionetti, G. Cavaliere. et al.(2016). Effects of an high-fat diet enriched in lard or in fish oil on the hypothalamic amp-activated protein kinase and inflammatory mediators. Frontiers in Cellular Neuroscience.10:150. DOI: 10.3322/caac.21551.
[116] C. Kruger, Y. Zhou. (2018). Red meat and colon cancer: A review of mechanistic evidence for heme in the context of risk assessment methodology. Food and Chemical Toxicology.118:131-153. DOI: 10.3322/caac.21551.
[117] I. P. van Munster, A. Tangerman, F. M. Nagengast. (1994). Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences.39(4):834-842. DOI: 10.3322/caac.21551.
[118] K. Shida, J. Kiyoshima-Shibata, M. Nagaoka, K. Watanabe. et al.(2006). Induction of interleukin-12 by Lactobacillus strains having a rigid cell wall resistant to intracellular digestion. Journal of Dairy Science.89(9):3306-3317. DOI: 10.3322/caac.21551.
[119] A. Orlando, C. Messa, M. Linsalata, A. Cavallini. et al.(2009). Effects of Lactobacillus rhamnosus GG on proliferation and polyamine metabolism in HGC-27 human gastric and DLD-1 colonic cancer cell lines. Immunopharmacology and Immunotoxicology.31(1):108-116. DOI: 10.3322/caac.21551.
[120] M. Eslami, B. Yousefi, P. Kokhaei, M. Hemati. et al.(2019). Importance of probiotics in the prevention and treatment of colorectal cancer. Journal of Cellular Physiology. DOI: 10.3322/caac.21551.
[121] A. P. B. Moreira, T. F. S. Texeira, A. B. Ferreira, M. Do Carmo Gouveia Peluzio. et al.(2012). Influence of a high-fat diet on gut microbiota, intestinal permeability and metabolic endotoxaemia. British Journal of Nutrition.108(5):801-809. DOI: 10.3322/caac.21551.
[122] R. Lai, Z. Bian, H. Lin, J. Ren. et al.(2017). The association between dietary protein intake and colorectal cancer risk: a meta-analysis. World Journal of Surgical Oncology.15(1, article no. 169). DOI: 10.3322/caac.21551.
[123] A. Sivan, L. Corrales, N. Hubert, J. B. Williams. et al.(2015). Commensal Bifidobacterium promotes antitumor immunity and facilitates anti-PD-L1 efficacy. Science.350(6264):1084-1089. DOI: 10.3322/caac.21551.
[124] S. J. Bultman. (2017). Interplay between diet, gut microbiota, epigenetic events, and colorectal cancer. Molecular Nutrition & Food Research.61(1). DOI: 10.3322/caac.21551.
[125] S. Toden, A. R. Bird, D. L. Topping, M. A. Conlon. et al.(2006). Resistant starch prevents colonic DNA damage induced by high dietary cooked red meat or casein in rats. Cancer Biology & Therapy.5(3):367-372. DOI: 10.3322/caac.21551.
[126] M. Nyström, M. Mutanen. (2009). Diet and epigenetics in colon cancer. World Journal of Gastroenterology.15(3):257-263. DOI: 10.3322/caac.21551.
[127] T. Shusuke, A. R. Bird, D. L. Topping, M. A. Conlon. et al.(2005). Resistant starch attenuates colonic DNA damage induced by higher dietary protein in rats. Nutrition & Cancer-An International Journal.51(1):45-51. DOI: 10.3322/caac.21551.
文献评价指标
浏览 20次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次