首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2019 ,2019-07-21
FIB-SEM Three-Dimensional Tomography for Characterization of Carbon-Based Materials
Review Article
Nan Nan 1 Jingxin Wang 1
Show affiliations
DOI:10.1155/2019/8680715
Received 2019-04-12, accepted for publication 2019-06-27, Published 2019-06-27
PDF
摘要

A review on the recent advances of the three-dimensional (3D) characterization of carbon-based materials was conducted by focused ion beam-scanning electron microscope (FIB-SEM) tomography. Current studies and further potential applications of the FIB-SEM 3D tomography technique for carbon-based materials were discussed. The goal of this paper is to highlight the advances of FIB-SEM 3D reconstruction to reveal the high and accurate resolution of internal structures of carbon-based materials and provide suggestions for the adoption and improvement of the FIB-SEM tomography system for a broad carbon-based research to achieve the best examination performances and enhance the development of innovative carbon-based materials.

授权许可

Copyright © 2019 Nan Nan and Jingxin Wang. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jingxin Wang.Division of Forestry and Natural Resources, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26505, USA, wvu.edu.jxwang@wvu.edu

推荐引用方式

Nan Nan,Jingxin Wang. FIB-SEM Three-Dimensional Tomography for Characterization of Carbon-Based Materials. Advances in Materials Science and Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Cantoni, L. Holzer. (2014). Advances in 3D focused ion beam tomography. MRS Bulletin.39(4):354-360. DOI: 10.1016/j.jmat.2016.01.001.
[2] N. Nan, D. B. DeVallance. (2017). Development of poly(vinyl alcohol)/wood-derived biochar composites for use in pressure sensor applications. Journal of Materials Science.52(13):8247-8257. DOI: 10.1016/j.jmat.2016.01.001.
[3] Y. Song, C. A. Davy, D. Troadec, X. Bourbon. et al.(2019). Pore network of cement hydrates in a high performance concrete by 3D FIB/SEM—implications for macroscopic fluid transport. Cement and Concrete Research.115:308-326. DOI: 10.1016/j.jmat.2016.01.001.
[4] S. Ghosh, H. Ohashi, H. Tabata, Y. Hashimasa. et al.(2015). Microstructural pore analysis of the catalyst layer in a polymer electrolyte membrane fuel cell: a combination of resin pore-filling and FIB/SEM. International Journal of Hydrogen Energy.40(45):15663-15671. DOI: 10.1016/j.jmat.2016.01.001.
[5] H. Aslannejad, S. M. Hassanizadeh, A. Raoof, D. A. M. de Winter. et al.(2017). Characterizing the hydraulic properties of paper coating layer using FIB-SEM tomography and 3D pore-scale modeling. Chemical Engineering Science.160:275-280. DOI: 10.1016/j.jmat.2016.01.001.
[6] A. F. Ismail, L. I. B. David. (2001). A review on the latest development of carbon membranes for gas separation. Journal of Membrane Science.193(1):1-18. DOI: 10.1016/j.jmat.2016.01.001.
[7] M. Soleimani, G. Gholami, M. T. Ravanchi. (2013). Application of carbon membranes for gas separation: a review. Journal of Industrial Research & Technology.3(1):53-58. DOI: 10.1016/j.jmat.2016.01.001.
[8] W. N. W. Salleh, A. F. Ismail, T. Matsuura, M. S. Abdullah. et al.(2011). Precursor selection and process conditions in the preparation of carbon membrane for gas separation: a review. Separation & Purification Reviews.40(4):261-311. DOI: 10.1016/j.jmat.2016.01.001.
[9] F. Li, Y. Liu, C.-B. Qu. (2015). Enhanced mechanical properties of short carbon fiber reinforced polyethersulfone composites by graphene oxide coating. Polymer.59:155-165. DOI: 10.1016/j.jmat.2016.01.001.
[10] S. Liu, Y. Yin, K. S. Hui, K. N. Hui. et al.(2019). Nickel hydroxide/chemical vapor deposition-grown graphene/nickel hydroxide/nickel foam hybrid electrode for high performance supercapacitors. Electrochimica Acta.297:479-487. DOI: 10.1016/j.jmat.2016.01.001.
[11] J. Balach, F. Soldera, D. F. Acevedo, F. Mücklich. et al.(2013). A direct and quantitative three-dimensional reconstruction of the internal structure of disordered mesoporous carbon with tailored pore size. Microscopy and Microanalysis.19(3):745-750. DOI: 10.1016/j.jmat.2016.01.001.
[12] M. N. Nejad, M. Asghari, M. Afsari. (2016). Investigation of carbon nanotubes in mixed matrix membranes for gas separation: a review. ChemBioEng Reviews.3(6):276-298. DOI: 10.1016/j.jmat.2016.01.001.
[13] A. P. Cocco, G. J. Nelson, W. M. Harris. (2013). Three-dimensional microstructural imaging methods for energy materials. Physical Chemistry Chemical Physics.15(39):16377-16407. DOI: 10.1016/j.jmat.2016.01.001.
[14] Ihsanullah, A. Abbas, A. M. Al-Amer. (2016). Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Separation and Purification Technology.157:141-161. DOI: 10.1016/j.jmat.2016.01.001.
[15] B. K. Singh, A. Shaikh, R. O. Dusane, S. Parida. et al.(2019). Nanoporous gold-nitrogen-doped carbon nano-onions all-solid-state micro-supercapacitor. Nano-Structures & Nano-Objects.17:239-247. DOI: 10.1016/j.jmat.2016.01.001.
[16] Q. Wang, J. Yan, Z. Fan. (2016). Carbon materials for high volumetric performance supercapacitors: design, progress, challenges and opportunities. Energy & Environmental Science.9(3):729-762. DOI: 10.1016/j.jmat.2016.01.001.
[17] Q. Ke, J. Wang. (2016). Graphene-based materials for supercapacitor electrodes—a review. Journal of Materiomics.2(1):37-54. DOI: 10.1016/j.jmat.2016.01.001.
[18] T. L. Burnett, R. Kelley, B. Winiarski. (2016). Large volume serial section tomography by Xe plasma FIB dual beam microscopy. Ultramicroscopy.161:119-129. DOI: 10.1016/j.jmat.2016.01.001.
[19] M. I. Inyang, B. Gao, Y. Yao. (2016). A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology.46(4):406-433. DOI: 10.1016/j.jmat.2016.01.001.
[20] G. Brus, H. Iwai, M. Mozdzierz. (2017). Combining structural, electrochemical, and numerical studies to investigate the relation between microstructure and the stack performance. Journal of Applied Electrochemistry.47(9):979-989. DOI: 10.1016/j.jmat.2016.01.001.
[21] G. Gaiselmann, M. Neumann, L. Holzer, T. Hocker. et al.(2013). Stochastic 3D modeling of LaSrCoO cathodes based on structural segmentation of FIB-SEM images. Computational Materials Science.67:48-62. DOI: 10.1016/j.jmat.2016.01.001.
[22] X. Shen, Y. Li, T. Qian. (2019). Lithium anode stable in air for low-cost fabrication of a dendrite-free lithium battery. Nature Communications.10(1):900. DOI: 10.1016/j.jmat.2016.01.001.
[23] A. Etiemble, A. Tranchot, T. Douillard, H. Idrissi. et al.(2016). Evolution of the 3D microstructure of a Si-based electrode for Li-ion batteries investigated by FIB/SEM tomography. Journal of the Electrochemical Society.163(8):A1550-A1559. DOI: 10.1016/j.jmat.2016.01.001.
[24] Z. Liu, Y.-C. K. Chen-Wiegart, J. Wang, S. A. Barnett. et al.(2016). Three-phase 3D reconstruction of a LiCoO cathode via FIB-SEM tomography. Microscopy and Microanalysis.22(1):140-148. DOI: 10.1016/j.jmat.2016.01.001.
[25] N. Nan, D. B. DeVallance, X. Xie, J. Wang. et al.(2016). The effect of bio-carbon addition on the electrical, mechanical, and thermal properties of polyvinyl alcohol/biochar composites. Journal of Composite Materials.50(9):1161-1168. DOI: 10.1016/j.jmat.2016.01.001.
[26] Y.-H. Zhao, Y.-F. Zhang, S.-L. Bai, X.-W. Yuan. et al.(2016). Carbon fibre/graphene foam/polymer composites with enhanced mechanical and thermal properties. Composites Part B: Engineering.94:102-108. DOI: 10.1016/j.jmat.2016.01.001.
[27] P. A. Basnayaka, M. K. Ram. (2017). A review of supercapacitor energy storage using nanohybrid conducting polymers and carbon electrode materials. Conducting Polymer Hybrids:165-192. DOI: 10.1016/j.jmat.2016.01.001.
[28] A. Karaipekli, A. Biçer, A. Sarı, V. V. Tyagi. et al.(2017). Thermal characteristics of expanded perlite/paraffin composite phase change material with enhanced thermal conductivity using carbon nanotubes. Energy Conversion and Management.134:373-381. DOI: 10.1016/j.jmat.2016.01.001.
[29] X. Liu, M. N. Marlow, S. J. Cooper. (2018). Flexible all-fiber electrospun supercapacitor. Journal of Power Sources.384:264-269. DOI: 10.1016/j.jmat.2016.01.001.
[30] A. Borenstein, O. Hanna, R. Attias, S. Luski. et al.(2017). Carbon-based composite materials for supercapacitor electrodes: a review. Journal of Materials Chemistry A.5(25):12653-12672. DOI: 10.1016/j.jmat.2016.01.001.
[31] S. Zhou, D. Liu, Y. Cai, Y. Yao. et al.(2017). 3D characterization and quantitative evaluation of pore-fracture networks of two Chinese coals using FIB-SEM tomography. International Journal of Coal Geology.174:41-54. DOI: 10.1016/j.jmat.2016.01.001.
[32] Z. Gao, Y. Zhang, N. Song, X. Li. et al.(2017). Biomass-derived renewable carbon materials for electrochemical energy storage. Materials Research Letters.5(2):69-88. DOI: 10.1016/j.jmat.2016.01.001.
[33] Y. Zhang, M. Dong, S. Zhu, C. Liu. et al.(2014). MnO@colloid carbon spheres nanocomposites with tunable interior architecture for supercapacitors. Materials Research Bulletin.49:448-453. DOI: 10.1016/j.jmat.2016.01.001.
[34] D. Wei, S. Jacobs, S. Modla. (2012). High-resolution three-dimensional reconstruction of a whole yeast cell using focused-ion beam scanning electron microscopy. BioTechniques.53(1):41-48. DOI: 10.1016/j.jmat.2016.01.001.
[35] N. Ogihara, Y. Ozawa, O. Hiruta. (2016). A self-assembled intercalated metal-organic framework electrode with outstanding area capacity for high volumetric energy asymmetric capacitors. Journal of Materials Chemistry A.4(9):3398-3405. DOI: 10.1016/j.jmat.2016.01.001.
[36] S. K. Eswara-Moorthy, P. Balasubramanian, W. van Mierlo. (2014). An in situ SEM-FIB-based method for contrast enhancement and tomographic reconstruction for structural quantification of porous carbon electrodes. Microscopy and Microanalysis.20(5):1576-1580. DOI: 10.1016/j.jmat.2016.01.001.
[37] Y. Katayanagi, T. Shimizu, Y. Hashimasa, N. Matsushita. et al.(2015). Cross-sectional observation of nanostructured catalyst layer of polymer electrolyte fuel cell using FIB/SEM. Journal of Power Sources.280:210-216. DOI: 10.1016/j.jmat.2016.01.001.
[38] S. Liu, L. Sun, J. Gao, K. Li. et al.(2018). A fast curtain-removal method for 3D FIB-SEM images of heterogeneous minerals. Journal of Microscopy.272(1):3-11. DOI: 10.1016/j.jmat.2016.01.001.
[39] M. Zhao, B. Ming, J.-W. Kim. (2015). New insights into subsurface imaging of carbon nanotubes in polymer composites via scanning electron microscopy. Nanotechnology.26(16). DOI: 10.1016/j.jmat.2016.01.001.
[40] E. L. Solla, L. Micheron, P. Yot, J. Méndez. et al.(2016). 3D reconstruction and porosity study of a hierarchical porous monolithic metal organic framework by FIB-SEM nanotomography. Microscopy and Microanalysis.22(S4):4-5. DOI: 10.1016/j.jmat.2016.01.001.
[41] D. A. Saab, P. Basset, F. Marty, D. E. Angelescu. et al.Accurate 3D reconstruction of silicon micro/nanostructures, based on high resolution FIB-SEM tomography: application to black silicon. :1-4. DOI: 10.1016/j.jmat.2016.01.001.
[42] M.-S. Balogun, Y. Luo, W. Qiu, P. Liu. et al.(2016). A review of carbon materials and their composites with alloy metals for sodium ion battery anodes. Carbon.98:162-178. DOI: 10.1016/j.jmat.2016.01.001.
[43] S. Steinbeiss, G. Gleixner, M. Antonietti. (2009). Effect of biochar amendment on soil carbon balance and soil microbial activity. Soil Biology and Biochemistry.41(6):1301-1310. DOI: 10.1016/j.jmat.2016.01.001.
[44] J. Liang, Z.-H. Sun, F. Li, H.-M. Cheng. et al.(2016). Carbon materials for Li–S batteries: functional evolution and performance improvement. Energy Storage Materials.2:76-106. DOI: 10.1016/j.jmat.2016.01.001.
[45] S. N. Monteiro, S. Paciornik. (2017). From historical backgrounds to recent advances in 3D characterization of materials: an overview. Journal of Minerals, Metals & Materials Society.69(1):84-92. DOI: 10.1016/j.jmat.2016.01.001.
[46] M. Keppeler, N. Shen, S. Nageswaran, M. Srinivasan. et al.(2016). Synthesis of -FeO/carbon nanocomposites as high capacity electrodes for next generation lithium ion batteries: a review. Journal of Materials Chemistry A.4(47):18223-18239. DOI: 10.1016/j.jmat.2016.01.001.
[47] J. Zhang, L. Qu, G. Shi, J. Liu. et al.(2016). N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angewandte Chemie International Edition.55(6):2230-2234. DOI: 10.1016/j.jmat.2016.01.001.
[48] G. Wu, A. Santandreu, W. Kellogg. (2016). Carbon nanocomposite catalysts for oxygen reduction and evolution reactions: from nitrogen doping to transition-metal addition. Nano Energy.29:83-110. DOI: 10.1016/j.jmat.2016.01.001.
[49] S. Vierrath, L. Zielke, R. Moroni. (2015). Morphology of nanoporous carbon-binder domains in Li-ion batteries—a FIB-SEM study. Electrochemistry Communications.60:176-179. DOI: 10.1016/j.jmat.2016.01.001.
[50] B. Fang, B. A. Pinaud, D. P. Wilkinson. (2016). Carbon-supported Pt hollow nanospheres as a highly efficient electrocatalyst for the oxygen reduction reaction. Electrocatalysis.7(4):336-344. DOI: 10.1016/j.jmat.2016.01.001.
[51] M. Kishimoto. (2013). Three-Dimensional Microstructure of Solid Oxide Fuel Cell Anode: Observation, Quantification, and Application to Numerical Analysis. DOI: 10.1016/j.jmat.2016.01.001.
[52] S. Thiele, T. Fürstenhaupt, D. Banham. (2013). Multiscale tomography of nanoporous carbon-supported noble metal catalyst layers. Journal of Power Sources.228:185-192. DOI: 10.1016/j.jmat.2016.01.001.
[53] A. Sheidaei, M. Baniassadi, M. Banu. (2013). 3-D microstructure reconstruction of polymer nano-composite using FIB-SEM and statistical correlation function. Composites Science and Technology.80:47-54. DOI: 10.1016/j.jmat.2016.01.001.
[54] K. Hagita, T. Higuchi, H. Jinnai. (2018). Super-resolution for asymmetric resolution of FIB-SEM 3D imaging using AI with deep learning. Scientific Reports.8(1):5877. DOI: 10.1016/j.jmat.2016.01.001.
[55] P. Bala, K. Tsyrulin, H. Jaksch, M. Stepien. et al.(2015). 3D reconstruction and characterization of carbides in Ni-based high carbon alloy in a FIB-SEM system. International Journal of Materials Research.106(7):764-770. DOI: 10.1016/j.jmat.2016.01.001.
[56] R. C. Rodriguez, A. B. Moncada, D. F. Acevedo, G. A. Planes. et al.(2013). Electroanalysis using modified hierarchical nanoporous carbon materials. Faraday Discussions.164:147-173. DOI: 10.1016/j.jmat.2016.01.001.
[57] R. S. Devarapalli, A. Islam, T. F. Faisal, M. Sassi. et al.(2017). Micro-CT and FIB–SEM imaging and pore structure characterization of dolomite rock at multiple scales. Arabian Journal of Geosciences.10(16):361. DOI: 10.1016/j.jmat.2016.01.001.
[58] S. Wong, N. Ngadi, I. M. Inuwa, O. Hassan. et al.(2018). Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. Journal of Cleaner Production.175:361-375. DOI: 10.1016/j.jmat.2016.01.001.
[59] T. Xie, B. Y. Sadasivam, K. R. Reddy, C. Wang. et al.(2016). Review of the effects of biochar amendment on soil properties and carbon sequestration. Journal of Hazardous, Toxic, and Radioactive Waste.20(1). DOI: 10.1016/j.jmat.2016.01.001.
[60] M. A. Groeber. (2007). Development of an Automated Characterization-Representation Framework for the Modeling of Polycrystalline Materials in 3D. DOI: 10.1016/j.jmat.2016.01.001.
[61] B. Munch, P. Gasser, L. Holzer, R. Flatt. et al.(2006). FIB-nanotomography of particulate systems—part II: particle recognition and effect of boundary truncation. Journal of the American Ceramic Society.89(8):2586-2595. DOI: 10.1016/j.jmat.2016.01.001.
[62] J. H. Windeatt, A. B. Ross, P. T. Williams, P. M. Forster. et al.(2014). Characteristics of biochars from crop residues: potential for carbon sequestration and soil amendment. Journal of Environmental Management.146:189-197. DOI: 10.1016/j.jmat.2016.01.001.
[63] A. Yürüm, Z. Ö. Kocabaş-Ataklı, M. Sezen, R. Semiat. et al.(2014). Fast deposition of porous iron oxide on activated carbon by microwave heating and arsenic (V) removal from water. Chemical Engineering Journal.242:321-332. DOI: 10.1016/j.jmat.2016.01.001.
[64] K. Bae, J. W. Kim, J.-W. Son. (2018). 3D evaluation of porous zeolite absorbents using FIB-SEM tomography. International Journal of Precision Engineering and Manufacturing-Green Technology.5(2):195-199. DOI: 10.1016/j.jmat.2016.01.001.
文献评价指标
浏览 8次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次