首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2019 ,2019-07-21
Associated Determinants of Surface Urban Heat Islands across 1449 Cities in China
Research Article
Yuanzheng Li 1 , 2 , 3 Lan Wang 4 Min Liu 1 , 3 Guosong Zhao 5 Tian He 6 Qizheng Mao 1
Show affiliations
DOI:10.1155/2019/4892714
Received 2019-04-18, accepted for publication 2019-06-12, Published 2019-06-12
PDF
摘要

The thermal environment is closely related to human well-being. Determinants of surface urban heat islands (SUHIs) have been extensively studied. Nevertheless, some research fields remain blank or have conflicting findings, which need to be further addressed. Particularly, few studies focus on drivers of SUHIs in massive cities with different sizes under various contexts at large scales. Using multisource data, we explored 11 determinants of surface urban heat island intensity (SUHII) for 1449 cities in different ecological contexts throughout China in 2010, adopting the Spearman and partial correlation analysis and machine learning method. The main results were as follows: (1) Significant positive partial correlations existed between daytime SUHII and the differences in nighttime light intensity and built-up intensity between cities and their corresponding villages except in arid or semiarid western China. The differences in the enhanced vegetation index were generally partially negatively correlated with daytime and nighttime SUHII. The differences in white sky albedo were usually partially negatively correlated with nighttime SUHII. The mean air temperature was partially positively correlated with nighttime SUHII in 40% of cases. Only a few significant partial relationships existed between SUHII and urban area, total population, and differences in aerosol optical depth. The explanation rates during daytime were larger than during nighttime in 72% of cases. The largest and smallest rates occurred during summer days in humid cold northeastern China (63.84%) and in southern China (10.44%), respectively. (2) Both the daytime and nighttime SUHII could be well determined by drivers using the machine learning method. The RMSE ranged from 0.49°C to 1.54°C at a national scale. The simulation SUHII values were always significantly correlated with the actual SUHII values. The simulation accuracies were always higher during nighttime than daytime. The highest accuracies occurred in central-northern China and were lowest in western China during both daytime and nighttime.

授权许可

Copyright © 2019 Yuanzheng Li et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Lan Wang.Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China, cas.cn.wlsunshinelz@163.com
2. Guosong Zhao.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, cas.cn.zhaogs86@126.com

推荐引用方式

Yuanzheng Li,Lan Wang,Min Liu,Guosong Zhao,Tian He,Qizheng Mao. Associated Determinants of Surface Urban Heat Islands across 1449 Cities in China. Advances in Meteorology ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Oke. (1982). The energetic basic of the urban heat island. Quarterly Journal of the Royal Meteorological Society.108(455):1-24. DOI: 10.1016/j.apenergy.2018.03.192.
[2] Y. Zhang, L. Sun. (2019). Spatial-temporal impacts of urban land use land cover on land surface temperature: case studies of two Canadian urban areas. International Journal of Applied Earth Observation and Geoinformation.75:171-181. DOI: 10.1016/j.apenergy.2018.03.192.
[3] B. Zheng, S. W. Myint, C. Fan. (2014). Spatial configuration of anthropogenic land cover impacts on urban warming. Landscape and Urban Planning.130(1):104-111. DOI: 10.1016/j.apenergy.2018.03.192.
[4] W. Huang, J. Li, Q. Guo, L. Mansaray. et al.(2017). A satellite-derived climatological analysis of urban heat island over Shanghai during 2000–2013. Remote Sensing.9(7):641. DOI: 10.1016/j.apenergy.2018.03.192.
[5] T. Chen. (2017). Studies on Spatiotemporal Dynamics of Thermal Radiation Temperatures of Different Landscapes in Beijing City. DOI: 10.1016/j.apenergy.2018.03.192.
[6] Y. Li, M. Zhao, S. Motesharrei. (2015). Local cooling and warming effects of forests based on satellite observations. Nature Communications.6:6603. DOI: 10.1016/j.apenergy.2018.03.192.
[7] K. Deilami, M. Kamruzzaman, Y. Liu. (2018). Urban heat island effect: a systematic review of spatio-temporal factors, data, methods, and mitigation measures. International Journal of Applied Earth Observation and Geoinformation.67:30-42. DOI: 10.1016/j.apenergy.2018.03.192.
[8] R. A. Memon, D. Y. C. Leung, C.-H. Liu. (2009). An investigation of urban heat island intensity (UHII) as an indicator of urban heating. Atmospheric Research.94(3):491-500. DOI: 10.1016/j.apenergy.2018.03.192.
[9] H. Shastri, B. Barik, S. Ghosh. (2017). Flip flop of day-night and summer-winter surface urban heat island intensity in India. Scientific Reports.7. DOI: 10.1016/j.apenergy.2018.03.192.
[10] A. Chudnovsky, E. Ben-Dor, H. Saaroni. (2004). Diurnal thermal behavior of selected urban objects using remote sensing measurements. Energy and Buildings.36(11):1063-1074. DOI: 10.1016/j.apenergy.2018.03.192.
[11] N. Schwarz, S. Lautenbach, R. Seppelt. (2011). Exploring indicators for quantifying surface urban heat islands of European cities with MODIS land surface temperatures. Remote Sensing of Environment.115(12):3175-3186. DOI: 10.1016/j.apenergy.2018.03.192.
[12] Q. Yu, M. Acheampong, R. Pu, S. M. Landry. et al.(2018). Assessing effects of urban vegetation height on land surface temperature in the city of Tampa, Florida, USA. International Journal of Applied Earth Observation and Geoinformation.73:712-720. DOI: 10.1016/j.apenergy.2018.03.192.
[13] C. Keeratikasikorn, S. Bonafoni. (2018). Satellite images and Gaussian parameterization for an extensive analysis of urban heat islands in Thailand. Remote Sensing.10(5):665. DOI: 10.1016/j.apenergy.2018.03.192.
[14] R. Sánchez-Rodríguez, K. C. Seto, D. Simon, W. D. Solecki. et al.(2014). Science Plan: Urbanization and Global Environmental Change. DOI: 10.1016/j.apenergy.2018.03.192.
[15] J. Lai, W. Zhan, F. Huang. (2018). Identification of typical diurnal patterns for clear-sky climatology of surface urban heat islands. Remote Sensing of Environment.217:203-220. DOI: 10.1016/j.apenergy.2018.03.192.
[16] C. Yin, M. Yuan, Y. Lu, Y. Huang. et al.(2018). Effects of urban form on the urban heat island effect based on spatial regression model. Science of the Total Environment.634:696-704. DOI: 10.1016/j.apenergy.2018.03.192.
[17] L. Howard. (1833). Climate of London Deduced from Metrological Observations.1. DOI: 10.1016/j.apenergy.2018.03.192.
[18] D. Zhou, L. Zhang, D. Li, D. Huang. et al.(2016). Climate-vegetation control on the diurnal and seasonal variations of surface urban heat islands in China. Environmental Research Letters.11(7). DOI: 10.1016/j.apenergy.2018.03.192.
[19] D. Zhou, J. Xiao, S. Bonafoni. (2019). Satellite remote sensing of surface urban heat islands: progress, challenges, and perspectives. Remote Sensing.11(1):48. DOI: 10.1016/j.apenergy.2018.03.192.
[20] M. L. Imhoff, P. Zhang, R. E. Wolfe, L. Bounoua. et al.(2010). Remote sensing of the urban heat island effect across biomes in the continental USA. Remote Sensing of Environment.114(3):504-513. DOI: 10.1016/j.apenergy.2018.03.192.
[21] H. Li, Y. Zhou, X. Wang, X. Zhou. et al.(2019). Quantifying urban heat island intensity and its physical mechanism using WRF/UCM. Science of the Total Environment.650:3110-3119. DOI: 10.1016/j.apenergy.2018.03.192.
[22] M. Ranagalage, R. Estoque, H. Handayani. (2018). Relation between urban volume and land surface temperature: a comparative study of planned and traditional cities in Japan. Sustainability.10(7):2366. DOI: 10.1016/j.apenergy.2018.03.192.
[23] W. L. Filho, L. E. Icaza, V. O. Emanche. (2017). An evidence-based review of impacts, strategies and tools to mitigate urban heat islands. International Journal of Environmental Research & Public Health.14(12):1600. DOI: 10.1016/j.apenergy.2018.03.192.
[24] C. S. Greene, P. J. Kedron. (2018). Beyond fractional coverage: a multilevel approach to analyzing the impact of urban tree canopy structure on surface urban heat islands. Applied Geography.95:45-53. DOI: 10.1016/j.apenergy.2018.03.192.
[25] M. Zinzi, E. Carnielo, B. Mattoni. (2018). On the relation between urban climate and energy performance of buildings. A three-years experience in Rome, Italy. Applied Energy.221:148-160. DOI: 10.1016/j.apenergy.2018.03.192.
[26] P. Zhang, M. L. Imhoff, R. E. Wolfe, L. Bounoua. et al.(2010). Characterizing urban heat islands of global settlements using MODIS and nighttime lights products. Canadian Journal of Remote Sensing.36(3):185-196. DOI: 10.1016/j.apenergy.2018.03.192.
[27] R. Yao, L. Wang, X. Huang, Z. Niu. et al.(2017). Temporal trends of surface urban heat islands and associated determinants in major Chinese cities. Science of the Total Environment.609:742-754. DOI: 10.1016/j.apenergy.2018.03.192.
[28] H. H. Kim. (1992). Urban heat island. International Journal of Remote Sensing.13(12):2319-2336. DOI: 10.1016/j.apenergy.2018.03.192.
[29] M. Tiangco, A. M. F. Lagmay, J. Argete. (2008). ASTER-based study of the night-time urban heat island effect in Metro Manila. International Journal of Remote Sensing.29(10):2799-2818. DOI: 10.1016/j.apenergy.2018.03.192.
[30] L. Klok, S. Zwart, H. Verhagen, E. Mauri. et al.(2012). The surface heat island of Rotterdam and its relationship with urban surface characteristics. Resources, Conservation and Recycling.64(7):23-29. DOI: 10.1016/j.apenergy.2018.03.192.
[31] R. Yao, L. Wang, X. Huang, J. Chen. et al.(2018). Less sensitive of urban surface to climate variability than rural in Northern China. Science of the Total Environment.628-629:650-660. DOI: 10.1016/j.apenergy.2018.03.192.
[32] R. Yao, L. Wang, X. Huang, W. Gong. et al.(2019). Greening in rural areas increases the surface urban heat island intensity. Geophysical Research Letters.46(4):2204-2212. DOI: 10.1016/j.apenergy.2018.03.192.
[33] J. Quan, W. Zhan, Y. Chen, M. Wang. et al.(2016). Time series decomposition of remotely sensed land surface temperature and investigation of trends and seasonal variations in surface urban heat islands. Journal of Geophysical Research: Atmospheres.121(6):2638-2657. DOI: 10.1016/j.apenergy.2018.03.192.
[34] W. Zhan, W. Ju, S. Hai. (2014). Satellite-derived subsurface urban heat island. Environmental Science & Technology.48(20):12134-12140. DOI: 10.1016/j.apenergy.2018.03.192.
[35] S. W. Myint, E. A. Wentz, A. J. Brazel, D. A. Quattrochi. et al.(2013). The impact of distinct anthropogenic and vegetation features on urban warming. Landscape Ecology.28(5):959-978. DOI: 10.1016/j.apenergy.2018.03.192.
[36] S. Peng, S. Piao, P. Ciais. (2012). Response to comment on “surface urban heat island across 419 global big cities”. Environmental Science & Technology.46(12):6889-6890. DOI: 10.1016/j.apenergy.2018.03.192.
[37] Y.-C. Wang, B. K. H. Hu, S. W. Myint, C.-C. Feng. et al.(2018). Patterns of land change and their potential impacts on land surface temperature change in Yangon, Myanmar. Science of the Total Environment.643:738-750. DOI: 10.1016/j.apenergy.2018.03.192.
[38] L. Chen, M. Zhang, J. Zhu, Y. Wang. et al.(2018). Modeling impacts of urbanization and urban heat island mitigation on boundary layer meteorology and air quality in Beijing under different weather conditions. Journal of Geophysical Research: Atmospheres.123(8):4323-4344. DOI: 10.1016/j.apenergy.2018.03.192.
[39] T. Sharmin, K. Steemers, A. Matzarakis. (2017). Microclimatic modelling in assessing the impact of urban geometry on urban thermal environment. Sustainable Cities and Society.34:293-308. DOI: 10.1016/j.apenergy.2018.03.192.
[40] Y. Cui, X. Xu, J. Dong, Y. Qin. et al.(2016). Influence of urbanization factors on surface urban heat island intensity: a comparison of countries at different developmental phases. Sustainability.8(8):706. DOI: 10.1016/j.apenergy.2018.03.192.
[41] F. Marzban, S. Sodoudi, R. Preusker. (2018). The influence of land-cover type on the relationship between NDVI-LST and LST-Tair. International Journal of Remote Sensing.39(5):1377-1398. DOI: 10.1016/j.apenergy.2018.03.192.
[42] D. R. Richards, P. J. Edwards. (2018). Using water management infrastructure to address both flood risk and the urban heat island. International Journal of Water Resources Development.34(4):490-498. DOI: 10.1016/j.apenergy.2018.03.192.
[43] D. Zhou, S. Zhao, L. Zhang. (2015). The footprint of urban heat island effect in China. Scientific Reports.5. DOI: 10.1016/j.apenergy.2018.03.192.
[44] B. Shi, C.-S. Tang, L. Gao, C. Liu. et al.(2012). Observation and analysis of the urban heat island effect on soil in Nanjing, China. Environmental Earth Sciences.67(1):215-229. DOI: 10.1016/j.apenergy.2018.03.192.
[45] H. Tran, D. Uchihama, S. Ochi, Y. Yasuoka. et al.(2006). Assessment with satellite data of the urban heat island effects in Asian mega cities. International Journal of Applied Earth Observation and Geoinformation.8(1):34-48. DOI: 10.1016/j.apenergy.2018.03.192.
[46] A. Christen, R. Vogt. (2004). Energy and radiation balance of a central European city. International Journal of Climatology.24(11):1395-1421. DOI: 10.1016/j.apenergy.2018.03.192.
[47] Y. Li, K. Yin, Y. Wang. (2017). Studies on influence factors of surface urban heat island: a review. Word Science Technology Research and Development.36(1):51-61. DOI: 10.1016/j.apenergy.2018.03.192.
[48] G. Ren, J. Guo, M. Xu. (2005). Climate changes of China’s mainland over the past half century. Acta Meteorologica Sinica.63(6):942-956. DOI: 10.1016/j.apenergy.2018.03.192.
[49] J. M. A. Duncan, B. Boruff, A. Saunders, Q. Sun. et al.(2019). Turning down the heat: an enhanced understanding of the relationship between urban vegetation and surface temperature at the city scale. Science of the Total Environment.656:118-128. DOI: 10.1016/j.apenergy.2018.03.192.
[50] N. Mostofi, M. Hasanlou. (2017). Feature selection of various land cover indices for monitoring surface heat island in Tehran city using Landsat 8 imagery. Journal of Environmental Engineering and Landscape Management.25(3):241-250. DOI: 10.1016/j.apenergy.2018.03.192.
[51] N. Clinton, P. Gong. (2013). MODIS detected surface urban heat islands and sinks: global locations and controls. Remote Sensing of Environment.134:294-304. DOI: 10.1016/j.apenergy.2018.03.192.
[52] C. Wang, S. Myint, Z. Wang, J. Song. et al.(2016). Spatio-Temporal modeling of the urban heat island in the Phoenix metropolitan area: land use change implications. Remote Sensing.8(3):185. DOI: 10.1016/j.apenergy.2018.03.192.
[53] Y. Y. Lee, M. F. M. Din, M. Ponraj. (2017). Overview of urban heat island (UHI) phenomenon towards human thermal comfort. Environmental Engineering and Management Journal.16(9):2097-2111. DOI: 10.1016/j.apenergy.2018.03.192.
[54] A. A. Scott, D. W. Waugh, B. F. Zaitchik. (2018). Reduced urban heat island intensity under warmer conditions. Environmental Research Letters.13(6). DOI: 10.1016/j.apenergy.2018.03.192.
[55] C. Cao, X. Lee, S. Liu. (2016). Urban heat islands in China enhanced by haze pollution. Nature Communications.7. DOI: 10.1016/j.apenergy.2018.03.192.
[56] L. Sfîcă, P. Ichim, L. Apostol. (2017). The extent and intensity of the urban heat island in Iași city, Romania. Theoretical & Applied Climatology.134(3‐4):1-15. DOI: 10.1016/j.apenergy.2018.03.192.
[57] M. Jin, R. E. Dickinson, D. Zhang. (2005). The footprint of urban areas on global climate as characterized by MODIS. Journal of Climate.18(10):1551-1565. DOI: 10.1016/j.apenergy.2018.03.192.
[58] C.-D. Wu, S.-C. C. Lung, J.-F. Jan. (2013). Development of a 3-D urbanization index using digital terrain models for surface urban heat island effects. ISPRS Journal of Photogrammetry and Remote Sensing.81(7):1-11. DOI: 10.1016/j.apenergy.2018.03.192.
[59] Y. Li, L. Wang, L. Zhang, Q. Wang. et al.(2019). Monitoring the interannual spatiotemporal changes in the land surface thermal environment in both urban and rural regions from 2003 to 2013 in China based on remote sensing. Advances in Meteorology.2019:1-17. DOI: 10.1016/j.apenergy.2018.03.192.
[60] M. Z. Jacobson. (1998). Studying the effects of aerosols on vertical photolysis rate coefficient and temperature profiles over an urban airshed. Journal of Geophysical Research: Atmospheres.103(D9):10593-10604. DOI: 10.1016/j.apenergy.2018.03.192.
[61] D. X. Xiang, D. Li, H. Yan. (2018). The influence of the spatial characteristics of urban green space on the urban heat island effect in Suzhou industrial park. Sustainable Cities and Society.40:428-439. DOI: 10.1016/j.apenergy.2018.03.192.
[62] M. L. Imhoff, W. T. Lawrence, D. C. Stutzer. (1997). A technique for using composite DMSP/OLS “City Lights” satellite data to map urban area. Remote Sensing of Environment.61(3):361-370. DOI: 10.1016/j.apenergy.2018.03.192.
[63] Z. Liu, C. He, Q. Zhang, Q. Huang. et al.(2012). Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landscape and Urban Planning.106(1):62-72. DOI: 10.1016/j.apenergy.2018.03.192.
[64] N. Yadav, C. Sharma. (2018). Spatial variations of intra-city urban heat island in megacity Delhi. Sustainable Cities and Society.37:298-306. DOI: 10.1016/j.apenergy.2018.03.192.
[65] C. D. Elvidge. (1997). Mapping city lights with nighttime data from the DMSP operational linescan system, photogramm. Photogrammetric Engineering & Remote Sensing.63(6):727-734. DOI: 10.1016/j.apenergy.2018.03.192.
[66] R. Yao, L. Wang, X. Huang, W. Zhang. et al.(2018). Interannual variations in surface urban heat island intensity and associated drivers in China. Journal of Environmental Management.222:86-94. DOI: 10.1016/j.apenergy.2018.03.192.
[67] Q. Yang, X. Huang, J. Li. (2017). Assessing the relationship between surface urban heat islands and landscape patterns across climatic zones in China. Scientific Reports.7(1):9337. DOI: 10.1016/j.apenergy.2018.03.192.
[68] D. Zhou, S. Zhao, S. Liu, L. Zhang. et al.(2014). Surface urban heat island in China’s 32 major cities: spatial patterns and drivers. Remote Sensing of Environment.152:51-61. DOI: 10.1016/j.apenergy.2018.03.192.
[69] S. Peng, S. Piao, P. Ciais. (2011). Surface urban heat island across 419 global big cities. Environmental Science & Technology.46(2):696-703. DOI: 10.1016/j.apenergy.2018.03.192.
[70] F. Xiao, Y.-z. Li, Y. Du. (2014). Monitoring perennial sub-surface waterlogged croplands based on MODIS in Jianghan plain, middle reaches of the Yangtze river. Journal of Integrative Agriculture.13(8):1791-1801. DOI: 10.1016/j.apenergy.2018.03.192.
[71] Q. Yang, X. Huang, Q. Tang. (2019). The footprint of urban heat island effect in 302 Chinese cities: temporal trends and associated factors. Science of the Total Environment.655:652-662. DOI: 10.1016/j.apenergy.2018.03.192.
[72] Y. Li, X. Gong, Z. Guo, K. Xu. et al.(2016). An index and approach for water extraction using Landsat-OLI data. International Journal of Remote Sensing.37(16):3611-3635. DOI: 10.1016/j.apenergy.2018.03.192.
[73] United Nations. (2018). Department of Economic and Social Affairs, Population Division, World Urbanization Prospects: the 2018 Revision, Highlights. DOI: 10.1016/j.apenergy.2018.03.192.
[74] Y. Rudich, N. M. Donahue, T. F. Mentel. (2007). Aging of organic aerosol: bridging the gap between laboratory and field studies. Annual Review of Physical Chemistry.58(58):321. DOI: 10.1016/j.apenergy.2018.03.192.
[75] J. Wang, B. Huang, D. Fu, P. Atkinson. et al.(2015). Spatiotemporal variation in surface urban heat island intensity and associated determinants across major Chinese cities. Remote Sensing.7(4):3670-3689. DOI: 10.1016/j.apenergy.2018.03.192.
[76] L. Gawuc, J. Struzewska. (2016). Impact of MODIS quality control on temporally aggregated urban surface temperature and long-term surface urban heat island intensity. Remote Sensing.8(5):374. DOI: 10.1016/j.apenergy.2018.03.192.
[77] L. Chen, R. Jiang, W.-N. Xiang. (2016). Surface heat island in Shanghai and its relationship with urban development from 1989 to 2013. Advances in Meteorology.2016(22)-15. DOI: 10.1016/j.apenergy.2018.03.192.
[78] W. Kuang, J. Liu, J. Dong, W. Chi. et al.(2016). The rapid and massive urban and industrial land expansions in China between 1990 and 2010: a CLUD-based analysis of their trajectories, patterns, and drivers. Landscape and Urban Planning.145:21-33. DOI: 10.1016/j.apenergy.2018.03.192.
[79] A. Retalis, D. Paronis, S. Michaelides. (2013). Study of the August 2010 Heat Event in Cyprus. DOI: 10.1016/j.apenergy.2018.03.192.
文献评价指标
浏览 17次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次