首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-07-25
Prediction of the Shear Failure of Opened Rock Fractures and Implications for Rock Slope Stability Evaluation
Research Article
Yingchun Li 1
Show affiliations
DOI:10.1155/2019/6760756
Received 2019-04-10, accepted for publication 2019-07-01, Published 2019-07-01
PDF
摘要

Rock slope commonly fails due to the shear failure of rock fractures. Shear strength of rock fractures are reduced substantially once the fracture surfaces are mismatched or opened. We propose a new criterion to predict the shear strength of rock fractures in different opening states. The degree of interlocking representing the true asperity contact area is incorporated into the modified model of Saeb and Amadei. The effect of fracture opening on asperity dilation and degradation is separately considered. The transitional stress that is a critical parameter involved in the model is analytically determined based on energy consideration. The new model is validated with experimental results from direct shear tests on synthetic fractures with regular-shaped asperities. Good agreement between the analytical solution and the experimental data confirms the capacity of the proposed model. Therefore, the model has great potential for assessing the stability of rock slopes where fractures are often opened due to stress relief and engineering disturbances.

授权许可

Copyright © 2019 Yingchun Li. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yingchun Li.State Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian 116024, China, dlut.edu.cn.yingchun_li@dlut.edu.cn

推荐引用方式

Yingchun Li. Prediction of the Shear Failure of Opened Rock Fractures and Implications for Rock Slope Stability Evaluation. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Li, W. Wu, C. A. Tang, B. Liu. et al.(2019). Predicting the shear characteristics of rock joints with asperity degradation and debris backfilling under cyclic loading conditions. International Journal of Rock Mechanics and Mining Sciences.120:108-118. DOI: 10.1016/0148-9062(92)93660-c.
[2] Z. C. Tang, L. N. Y. Wong. (2016). New criterion for evaluating the peak shear strength of rock joints under different contact states. Rock Mechanics and Rock Engineering.49(4):1191-1199. DOI: 10.1016/0148-9062(92)93660-c.
[3] R. E. Goodman. (1976). Methods of geological engineering in discontinuous rocks. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.13(10):115. DOI: 10.1016/0148-9062(92)93660-c.
[4] Y. Li, J. Oh, R. Mitra, I. Canbulat. et al.(2017). A fractal model for the shear behaviour of large-scale opened rock joints. Rock Mechanics and Rock Engineering.50(1):67-79. DOI: 10.1016/0148-9062(92)93660-c.
[5] N. Barton, V. Choubey. (1977). The shear strength of rock joints in theory and practice. Rock Mechanics Felsmechanik Méanique des Roches.10(1-2):1-54. DOI: 10.1016/0148-9062(92)93660-c.
[6] Y. Li, J. Oh, R. Mitra, B. Hebblewhite. et al.(2016). A constitutive model for a laboratory rock joint with multi-scale asperity degradation. Computers and Geotechnics.72:143-151. DOI: 10.1016/0148-9062(92)93660-c.
[7] ISRM. (2007). The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. DOI: 10.1016/0148-9062(92)93660-c.
[8] J. L. Wibowo. (1994). Effect of boundary conditions and surface damage on the shear behavior of rock joints: tests and analytical predictions. . DOI: 10.1016/0148-9062(92)93660-c.
[9] Y. Li, S. Sun, C. Tang. (2019). Analytical prediction of the shear behaviour of rock joints with quantified waviness and unevenness through wavelet analysis. Rock Mechanics and Rock Engineering:1-13. DOI: 10.1016/0148-9062(92)93660-c.
[10] J. Zhao. (1997). Joint surface matching and shear strength Part A: joint matching coefficient (JMC). International Journal of Rock Mechanics and Mining Sciences.34(2):173-178. DOI: 10.1016/0148-9062(92)93660-c.
[11] T.-F. Wong, P. Baud. (2012). The brittle-ductile transition in porous rock: a review. Journal of Structural Geology.44:25-53. DOI: 10.1016/0148-9062(92)93660-c.
[12] M. E. Plesha. (1987). Constitutive models for rock discontinuities with dilatancy and surface degradation. International Journal for Numerical and Analytical Methods in Geomechanics.11(4):345-362. DOI: 10.1016/0148-9062(92)93660-c.
[13] S. Saeb, B. Amadei. (1992). Modelling rock joints under shear and normal loading. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.29(3):267-278. DOI: 10.1016/0148-9062(92)93660-c.
[14] F. Johansson. (2016). Influence of scale and matedness on the peak shear strength of fresh, unweathered rock joints. International Journal of Rock Mechanics and Mining Sciences.82:36-47. DOI: 10.1016/0148-9062(92)93660-c.
[15] B. Ladanyi, G. Archambault. Simulation of shear behavior of a jointed rock mass. . DOI: 10.1016/0148-9062(92)93660-c.
[16] O. Buzzi, D. Casagrande. (2018). A step towards the end of the scale effect conundrum when predicting the shear strength of large in situ discontinuities. International Journal of Rock Mechanics and Mining Sciences.105:210-219. DOI: 10.1016/0148-9062(92)93660-c.
[17] S. R. Hencher, L. R. Richards. (2015). Assessing the shear strength of rock discontinuities at laboratory and field scales. Rock Mechanics and Rock Engineering.48(3):883-905. DOI: 10.1016/0148-9062(92)93660-c.
[18] F. D. Patton. Multiple modes of shear failure in rock. . DOI: 10.1016/0148-9062(92)93660-c.
[19] R. Cao, W. Tang, H. Lin, X. Fan. et al.(2018). Numerical analysis for the progressive failure of binary-medium interface under shearing. Advances in Civil Engineering.2018-11. DOI: 10.1016/0148-9062(92)93660-c.
[20] G. Grasselli, P. Egger. (2003). Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters. International Journal of Rock Mechanics and Mining Sciences.40(1):25-40. DOI: 10.1016/0148-9062(92)93660-c.
[21] S. Bandis, A. C. Lumsden, N. R. Barton. (1981). Experimental studies of scale effects on the shear behaviour of rock joints. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.18(1):1-21. DOI: 10.1016/0148-9062(92)93660-c.
[22] H. Dong, B. Guo, Y. Li, K. Si. et al.(2017). Empirical formula of shear strength of rock fractures based on 3D morphology parameters. Geotechnical and Geological Engineering.35(3):1-15. DOI: 10.1016/0148-9062(92)93660-c.
[23] Z. C. Tang, R. Q. Huang, Q. S. Liu, L. N. Y. Wong. et al.(2016). Effect of contact state on the shear behavior of artificial rock joint. Bulletin of Engineering Geology and the Environment.75(2):761-769. DOI: 10.1016/0148-9062(92)93660-c.
[24] J. Oh, G.-W. Kim. (2010). Effect of opening on the shear behavior of a rock joint. Bulletin of Engineering Geology and the Environment.69(3):389-395. DOI: 10.1016/0148-9062(92)93660-c.
[25] K. A. Hossaini, N. Babanouri, S. K. Nasab. (2014). The influence of asperity deformability on the mechanical behavior of rock joints. International Journal of Rock Mechanics and Mining Sciences.70:154-161. DOI: 10.1016/0148-9062(92)93660-c.
[26] J. Zhao. (1997). Joint surface matching and shear strength part B: JRC-JMC shear strength criterion. International Journal of Rock Mechanics and Mining Sciences.34(2):179-185. DOI: 10.1016/0148-9062(92)93660-c.
[27] H. J. Schneider. (1976). The friction and deformation behaviour of rock joints. Rock Mechanics Felsmechanik Mecanique des Roches.8(3):169-184. DOI: 10.1016/0148-9062(92)93660-c.
[28] Y. Li, J. Oh, R. Mitra, B. Hebblewhite. et al.(2016). Experimental studies on the mechanical behaviour of rock joints with various openings. Rock Mechanics and Rock Engineering.49(3):837-853. DOI: 10.1016/0148-9062(92)93660-c.
[29] C. Gerrard. (1986). Shear failure of rock joints: appropriate constraints for empirical relations. International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts.23(6):421-429. DOI: 10.1016/0148-9062(92)93660-c.
[30] P. Cundall, R. Hart. (1984). Analysis of block test no. 1 inelastic rock mass behavior: phase 2-A characterization of joint behavior (final report). . DOI: 10.1016/0148-9062(92)93660-c.
文献评价指标
浏览 19次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次