首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-07-22
Microscopic Characteristics of Fractured Sandstone after Cyclic Freezing-Thawing and Triaxial Unloading Tests
Research Article
Xiaohui Ni 1 , 2 Xiaomei Shen 1 Zhende Zhu 2
Show affiliations
DOI:10.1155/2019/6512461
Received 2019-05-18, accepted for publication 2019-07-07, Published 2019-07-07
PDF
摘要

The understanding of tunneling rock failure characteristics under unloading conditions in the cold region is critical for the proper design of rock tunneling support and mining safety operation. Given this understanding is currently limited, this study aimed to investigate the characteristics of fractured sandstone samples in the microscale after cyclic freezing-thawing and triaxial unloading tests. The samples were first subjected to different cycles of freezing and thawing, followed by the triaxial unloading test and scanning electron microscopy imaging. The peak strength and damage dilatancy stress were measured from the stress-strain curves. The microcrack characteristics (number, length, and width) were obtained through the image analysis. The results show that the decrease in peak strength and damage dilatancy stress was more significant by the first 20 freezing-thawing cycles when the pore pressure gradient is maximum compared to the later freezing-thawing cycles. The mechanical properties also significantly deteriorated when the severe freezing-thawing treatments were performed. The fracture section mainly had the morphology of honeycomb-like microstructure, stripped microstructure, and flocculent microstructure. The cracking extent was mainly influenced by the freezing-thawing rather than the triaxial unloading test, but the azimuthal angle of microcracks was significantly altered by the triaxial unloading. To properly design rock tunneling support and safe operation of mining in the cold region, both impact of cyclic freezing-thawing and the excavation operation direction should be considered.

授权许可

Copyright © 2019 Xiaohui Ni et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xiaohui Ni.College of Civil Engineering and Architecture, Jiaxing University, Jiaxing 314001, China, zjxu.edu.cn;Geotechnical Research Institute of Hohai University, Hohai University, Nanjing 210098, China, hhu.edu.cn.nixh2010@zjxu.edu.cn

推荐引用方式

Xiaohui Ni,Xiaomei Shen,Zhende Zhu. Microscopic Characteristics of Fractured Sandstone after Cyclic Freezing-Thawing and Triaxial Unloading Tests. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Z. Wu, H. S. Wong, N. R. Buenfeld. (2015). Influence of drying-induced microcracking and related size effects on mass transport properties of concrete. Cement and Concrete Research.68:35-48. DOI: 10.1016/0886-7798(94)90010-8.
[2] Ministry of Water Resources of the People’s Republic of China. (2001). Specifications for Rock Tests in Water Conservancy and Hydroelectric Engineering. DOI: 10.1016/0886-7798(94)90010-8.
[3] H. G. Ji, H. Jiang, C. Y. Song. (2018). Analysis on the microstructure evolution and fracture morphology during the softening process of weakly cemented sandstone. Journal of China Coal Society.43(4):993-999. DOI: 10.1016/0886-7798(94)90010-8.
[4] H. Y. Wang, A. Dyskin, P. Dight, E. Pasternak. et al.(2018). Review of unloading tests of dynamic rock failure in compression. Engineering Fracture Mechanics. DOI: 10.1016/0886-7798(94)90010-8.
[5] J. Li, R. B. Kaunda, K. Zhou. (2018). Experimental investigations on the effects of ambient freeze-thaw cycling on dynamic properties and rock pore structure deterioration of sandstone. Cold Regions Science and Technology.154:133-141. DOI: 10.1016/0886-7798(94)90010-8.
[6] T. R. Stacey. (1981). A simple extension strain criterion for fracture of brittle rock. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts.18(6):469-474. DOI: 10.1016/0886-7798(94)90010-8.
[7] A. Hirata, Y. Kameoka, T. Hirano. (2007). Safety management based on detection of possible rock bursts by AE monitoring during tunnel excavation. Rock Mechanics and Rock Engineering.40(6):563-576. DOI: 10.1016/0886-7798(94)90010-8.
[8] K. Duan, Y. L. Ji, W. Wu, Y. K. Chung. et al.(2019). Unloading-induced failure of brittle rock and implications for excavationinduced strain burst. Tunnelling and Underground Space Technology.84:495-506. DOI: 10.1016/0886-7798(94)90010-8.
[9] S. Zhang, Y. Lai, X. Zhang, Y. Pu. et al.(2004). Study on the damage propagation of surrounding rock from a cold-region tunnel under freeze-thaw cycle condition. Tunnelling and Underground Space Technology.19(3):295-302. DOI: 10.1016/0886-7798(94)90010-8.
[10] A. V. Dyskin, L. N. Germanovich. (1993). Model of rockburst caused by cracks growing near free surface. Rockbursts Seismicity in Mines.93:169-175. DOI: 10.1016/0886-7798(94)90010-8.
[11] W. D. Ortlepp, T. R. Stacey. (1994). Rockburst mechanisms in tunnels and shafts. Tunnelling and Underground Space Technology.9(1):59-65. DOI: 10.1016/0886-7798(94)90010-8.
[12] J. Eslami, C. Walbert, A.-L. Beaucour, A. Bourges. et al.(2018). Influence of physical and mechanical properties on the durability of limestone subjected to freeze-thaw cycles. Construction and Building Materials.162:420-429. DOI: 10.1016/0886-7798(94)90010-8.
[13] J. Zhang, H. Deng, A. Taheri, B. Ke. et al.(2019). Deterioration and strain energy development of sandstones under quasi-static and dynamic loading after freeze-thaw cycles. Cold Regions Science and Technology.160:252-264. DOI: 10.1016/0886-7798(94)90010-8.
[14] T. D. Kock, M. A. Boone, T. D. Schryver. (2015). “A pore-scale study of fracture dynamics in rock using X-ray micro-CT under ambient freeze–thaw cycling. Environmental Science and Technology.49(5):2867-2874. DOI: 10.1016/0886-7798(94)90010-8.
[15] J. Yu, C. Xu. (2015). Experimental study on mechanical properties of sandstone after freezing-thawing cycles under triaxial confining pressure unloading. Chinese Journal of Rock Mechanics and Engineering.34(10):2001-2009. DOI: 10.1016/0886-7798(94)90010-8.
[16] W. Zhu, W. Yang, X. Li, L. Xiang. et al.(2014). Study on splitting failure in rock masses by simulation test, site monitoring and energy model. Tunnelling and Underground Space Technology.41:152-164. DOI: 10.1016/0886-7798(94)90010-8.
[17] X. G. Zhao, M. Cai. (2014). Influence of specimen height-to-width ratio on the strainburst characteristics of Tianhu granite under true-triaxial unloading conditions. Canadian Geotechnical Journal.52(7):890-902. DOI: 10.1016/0886-7798(94)90010-8.
[18] Z. Rusin, P. Świercz, Z. Owsiak. (2015). Effect of microstructure on frost durability of rock in the context of diagnostic needs. Procedia Engineering.108:177-184. DOI: 10.1016/0886-7798(94)90010-8.
[19] M. C. He, J. L. Miao, J. L. Feng. (2010). Rock burst process of limestone and its acoustic emission characteristics under true-triaxial unloading conditions. International Journal of Rock Mechanics and Mining Sciences.47(2):286-298. DOI: 10.1016/0886-7798(94)90010-8.
[20] H. Westphal, I. Surholt, C. Kiesl, H. F. Thern. et al.(2005). NMR measurements in carbonate rocks: problems and an approach to a solution. Pure and Applied Geophysics PAGEOPH.162(3):549-570. DOI: 10.1016/0886-7798(94)90010-8.
[21] Z. Wu, H. S. Wong, N. R. Buenfeld. (2017). Transport properties of concrete after drying-wetting regimes to elucidate the effects of moisture content, hysteresis and microcracking. Cement and Concrete Research.98:136-154. DOI: 10.1016/0886-7798(94)90010-8.
[22] B. Ke, K. Zhou, C. Xu, H. Deng. et al.(2018). Dynamic mechanical property deterioration model of sandstone caused by freeze-thaw weathering. Rock Mechanics and Rock Engineering.51(9):2791-2804. DOI: 10.1016/0886-7798(94)90010-8.
[23] J. Park, C.-U. Hyun, H.-D. Park. (2015). Changes in microstructure and physical properties of rocks caused by artificial freeze-thaw action. Bulletin of Engineering Geology and the Environment.74(2):555-565. DOI: 10.1016/0886-7798(94)90010-8.
[24] S. Huang, Q. Liu, A. Cheng, Y. Liu. et al.(2018). A statistical damage constitutive model under freeze-thaw and loading for rock and its engineering application. Cold Regions Science and Technology.145:142-150. DOI: 10.1016/0886-7798(94)90010-8.
[25] N. W. Xu, T. B. Li, F. Dai, R. Zhang. et al.(2016). Microseismic monitoring of strainburst activities in deep tunnels at the Jinping II hydropower station, China. Rock Mechanics and Rock Engineering.49(3):981-1000. DOI: 10.1016/0886-7798(94)90010-8.
[26] G. Khanlari, R. Z. Sahamieh, Y. Abdilor. (2015). The effect of freeze-thaw cycles on physical and mechanical properties of upper red formation sandstones, central part of Iran. Arabian Journal of Geosciences.8(8):5991-6001. DOI: 10.1016/0886-7798(94)90010-8.
[27] C. Walbert, J. Eslami, A.-L. Beaucour, A. Bourges. et al.(2015). Evolution of the mechanical behaviour of limestone subjected to freeze-thaw cycles. Environmental Earth Sciences.74(7):6339-6351. DOI: 10.1016/0886-7798(94)90010-8.
[28] M. He, J. Miao, D. Li, C. Wang. et al.(2007). Experimental study on rockburst processes of granite specimen at great depth. Yanshilixue Yu Gongcheng Xuebao/Chinese Journal of Rock Mechanics and Engineering.6(5):865-876. DOI: 10.1016/0886-7798(94)90010-8.
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次