首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-07-24
Experimental Study on Compression and Intrinsic Permeability Characteristics of Municipal Solid Waste
Research Article
Gang Zeng 1 , 2 Jun Ma 2 Dan Hu 1 Jing Wang 1
Show affiliations
DOI:10.1155/2019/3541635
Received 2019-02-16, accepted for publication 2019-07-03, Published 2019-07-03
PDF
摘要

Compression and gas permeability characteristics of municipal solid waste (MSW) are of great significance to the design, construction, management, and operation of landfill. The objective of this paper was to study the compression and gas permeability characteristics of MSW. A compressing test device and gas permeability test device for MSW were introduced, and laboratory tests were carried out. The test results showed that the final strains at the vertical loads of 100 kPa, 200 kPa, 300 kPa, and 400 kPa were 35.8%, 45.1%, 49.2%, and 55.1%, respectively. The natural logarithm of void ratio and pressure was linearly correlated at different times. Intrinsic permeability measured without considering gas compressibility was smaller than that measured with considering gas compressibility. Intrinsic permeability of MSW decreased with the increase of the inlet pressure. It was suggested that the inlet pressure should be set to 3 kPa for the indoor gas permeability test of MSW. Intrinsic permeability of MSW decreases with the increase of water content and compression displacement. Power function and logarithmic model were suitable for the fitting of permeability and porosity of manually prepared fresh MSW samples, while the K-C model was not suitable. With the increase of moisture content, the coefficient and power index of the power function model decreased gradually. And the slope and intercept of the double logarithmic model also decreased gradually with the increase of moisture content.

授权许可

Copyright © 2019 Gang Zeng et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Gang Zeng.School of Civil Engineering and Architecture, Hubei University of Arts and Science, Xiangyang 441053, China, hbuas.edu.cn;State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan 430071, China, cas.cn.zg_cersm@163.com

推荐引用方式

Gang Zeng,Jun Ma,Dan Hu,Jing Wang. Experimental Study on Compression and Intrinsic Permeability Characteristics of Municipal Solid Waste. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] G. Stoltz, J. P. Gourc, L. Oxarango. (2010). Characterisation of the physico-mechanical parameters of MSW. Waste Management.30(8-9):1439-1449. DOI: 10.1016/j.ces.2010.09.007.
[2] C. A. Bareither, S. Kwak. (2015). Assessment of municipal solid waste settlement models based on field-scale data analysis. Waste Management.42:101-117. DOI: 10.1016/j.ces.2010.09.007.
[3] K. R. Reddy, H. Hettiarachchi, N. S. Parakalla, J. Gangathulasi. et al.(2009). Geotechnical properties of fresh municipal solid waste at Orchard Hills Landfill, USA. Waste Management.29(2):952-959. DOI: 10.1016/j.ces.2010.09.007.
[4] D. S. Shen. (2003). Domestic Waste Landfill Treatment Technology. DOI: 10.1016/j.ces.2010.09.007.
[5] J. Y. Shi, Y. Zhao. (2015). Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW). Chinese Journal of Geotechnical Engineering.37:586-593. DOI: 10.1016/j.ces.2010.09.007.
[6] W. Gao, Y. Chen, L. Zhan, X. Bian. et al.(2015). Engineering properties for high kitchen waste content municipal solid waste. Journal of Rock Mechanics and Geotechnical Engineering.7(6):646-658. DOI: 10.1016/j.ces.2010.09.007.
[7] X. Fei, D. Zekkos. (2013). Factors influencing long-term settlement of municipal solid waste in laboratory bioreactor landfill simulators. Journal of Hazardous, Toxic, and Radioactive Waste.17(4):259-271. DOI: 10.1016/j.ces.2010.09.007.
[8] A.-J. Tinet, L. Oxarango. (2010). Stationary gas flow to a vertical extraction well in MSW landfill considering the effect of mechanical settlement on hydraulic properties. Chemical Engineering Science.65(23):6229-6237. DOI: 10.1016/j.ces.2010.09.007.
[9] D. Q. Zhang, S. K. Tan, R. M. Gersberg. (2010). Municipal solid waste management in China: status, problems and challenges. Journal of Environmental Management.91(8):1623-1633. DOI: 10.1016/j.ces.2010.09.007.
[10] W. M. Ye, C. S. Wang, Q. Wang. (2009). Characteristics of gas permeability in unsaturated clayey soils. Journal of Engineering Geology.17(2):244-248. DOI: 10.1016/j.ces.2010.09.007.
[11] Q. Xue. (2017). Mechanism and Prevention of Gas-Liquid Migration and Disaster Municipal Solid Waste landfills. DOI: 10.1016/j.ces.2010.09.007.
[12] N. Dixon, D. R. V. Jones. (2005). Engineering properties of municipal solid waste. Geotextiles and Geomembranes.23(3):205-233. DOI: 10.1016/j.ces.2010.09.007.
[13] T. G. Poulsen, P. Moldrup. (2007). Air permeability of compost as related to bulk density and volumetric air content. Waste Management & Research.25(4):343-351. DOI: 10.1016/j.ces.2010.09.007.
[14] Y. M. Chen, T. L. T. Zhan, H. Y. Wei, H. Ke. et al.(2009). Aging and compressibility of municipal solid wastes. Waste Management.29(1):86-95. DOI: 10.1016/j.ces.2010.09.007.
[15] T. G. Poulsen, P. Moldrup, A. Thorbjørn, P. Schjønning. et al.(2007). Predicting air permeability in undisturbed, subsurface sandy soils from air-filled porosity. Journal of Environmental Engineering.133(10):995-1001. DOI: 10.1016/j.ces.2010.09.007.
[16] S. J. Feng, Q. T. Zheng, H. X. Chen. (2017). Unsaturated flow parameters of municipal solid waste. Waste Management.63:107-125. DOI: 10.1016/j.ces.2010.09.007.
[17] G. Stoltz, J. P. Gourc, L. Oxarango. (2010). Liquid and gas permeability of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology.118(1-2):27-42. DOI: 10.1016/j.ces.2010.09.007.
[18] X. B. Xu, T. L. T. Zhan, Y. M. Chen, R. P. Beaven. et al.(2014). Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qizishan landfill, China. Canadian Geotechnical Journal.51(11):1243-1252. DOI: 10.1016/j.ces.2010.09.007.
[19] G. L. S. Babu, K. R. Reddy, S. K. Chouskey. (2010). Constitutive model for municipal solid waste incorporating mechanical creep and biodegradation induced compression. Waste Management.30(1):11-22. DOI: 10.1016/j.ces.2010.09.007.
[20] G. Stoltz, J-P. Gourc, L. Oxarango. (2010). Liquid and gas permeability of unsaturated municipal solid waste under compression. Journal of Contaminant Hydrology.118(1-2):27-42. DOI: 10.1016/j.ces.2010.09.007.
[21] B. V. Iversen, P. Schjønning, T. G. Poulsen, P. Moldrup. et al.(2001). In situ, on-site and laboratory measurements of soil air permeability: boundary conditions and measurement scale. Soil Science.166(2):97-106. DOI: 10.1016/j.ces.2010.09.007.
[22] G. Zeng, L. Liu, Q. Xue, Y. Wan. et al.(2017). Experimental study of the porosity and permeability of municipal solid waste. Environmental Progress & Sustainable Energy.36(6):1694-1699. DOI: 10.1016/j.ces.2010.09.007.
文献评价指标
浏览 16次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次