首页 » 文章 » 文章详细信息
Security and Communication Networks Volume 2019 ,2019-06-27
A Secure Data Sharing Scheme with Designated Server
Research Article
Binrui Zhu 1 Jiameng Sun 1 Jing Qin 1 , 2 Jixin Ma 3
Show affiliations
DOI:10.1155/2019/4268731
Received 2019-03-29, accepted for publication 2019-06-04, Published 2019-06-04
PDF
摘要

The cloud-assisted Internet of Things (CIoT) is booming, which utilizes powerful data processing capabilities of the cloud platform to solve massive Internet of Things (IoT) data. However, the CIoT faces new security challenges, such as the confidentiality of the outsourced data. Data encryption is a fundamental technique that can guarantee the confidentiality of outsourced data, but it limits target encrypted data retrieval from cloud platform. Public key encryption with keyword search (PEKS) provides a promising solution to address this problem. In PEKS, a cloud server can be authorized to search the keyword in encrypted documents and retrieve associated encrypted documents for the receiver. However, most existing PEKS schemes merely focus on keyword search function while ignoring the associated documents encryption/decryption function. Thus, in practice, a PEKS scheme must cooperate with another separated public key encryption (PKE) scheme to fulfill a completely secure data sharing scheme. To address this problem, in this paper, we propose a secure data sharing scheme with designated server that combines PKE scheme with PEKS scheme, which provides both keyword search and documents encryption/decryption functions. Furthermore, only the designated server can search the keyword via encrypted documents for enhanced security in our work. Moreover, our scheme also satisfies the public verifiability of search results, which includes both keywords and documents ciphertexts’ correctness and integrity. As to the security, our scheme provides stronger indistinguishability security of document and keyword in the proposed security model.

授权许可

Copyright © 2019 Binrui Zhu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jing Qin.School of Mathematics, Shandong University, Jinan, Shandong 250100, China, sdu.edu.cn;State Key Laboratory of Information Security Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China, cas.cn.qinjing@sdu.edu.cn

推荐引用方式

Binrui Zhu,Jiameng Sun,Jing Qin,Jixin Ma. A Secure Data Sharing Scheme with Designated Server. Security and Communication Networks ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] X. Zhu, H. Dai, X. Yi, G. Yang. et al.(2017). MUSE: an efficient and accurate verifiable privacy-preserving multikeyword text search over encrypted cloud data. Security and Communication Networks.2017-17. DOI: 10.1007/978-3-540-24676-3_30.
[2] B. Zhu, J. Sun, J. Qin, J. Ma. et al.(2019). Fuzzy matching: multi-authority attribute searchable encryption without central authority. Soft Computing.23(2):527-536. DOI: 10.1007/978-3-540-24676-3_30.
[3] R. Zhang, R. Xue, T. Yu, L. Liu. et al.PVSAE: A public verifiable searchable encryption service framework for outsourced encrypted data. :428-435. DOI: 10.1007/978-3-540-24676-3_30.
[4] J. Baek, R. Safavi-Naini, W. Susilo. (2006). On the integration of public key data encryption and public key encryption with keyword search. Proceedings of the International Conference on Information Security:217-232. DOI: 10.1007/978-3-540-24676-3_30.
[5] B. Zhu, J. Sun, J. Qin, J. Ma. et al.The public verifiability of public key encryption with keyword search. :299-312. DOI: 10.1007/978-3-540-24676-3_30.
[6] E.-J. Goh. (2004). Secure indexes. IACR Cryptology ePrint Archive:216. DOI: 10.1007/978-3-540-24676-3_30.
[7] T. Okamoto, D. Pointcheval. (2001). REACT: rapid enhanced-security asymmetric cryptosystem transform. Topics in Cryptology — CT-RSA 2001.2020:159-174. DOI: 10.1007/978-3-540-24676-3_30.
[8] Q. Huang, H. Li. (2017). An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Information Sciences.403-404:1-14. DOI: 10.1007/978-3-540-24676-3_30.
[9] D. X. Song, D. Wagner, A. Perrig. Practical techniques for searches on encrypted data. :44-55. DOI: 10.1007/978-3-540-24676-3_30.
[10] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky. et al.Searchable symmetric encryption: Improved definitions and efficient constructions. :79-88. DOI: 10.1007/978-3-540-24676-3_30.
[11] P. Xu, H. Jin, Q. Wu, W. Wang. et al.(2013). Public-key encryption with fuzzy keyword search: a provably secure scheme under keyword guessing attack. IEEE Transactions on Computers.62(11):2266-2277. DOI: 10.1007/978-3-540-24676-3_30.
[12] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano. et al.(2004). Public key encryption with keyword search. Advances in Cryptology—EUROCRYPT 2004.3027:506-522. DOI: 10.1007/978-3-540-24676-3_30.
[13] N. Andola, S. Prakash, S. Venkatesan, S. Verma. et al.Improved secure server-designated public key encryption with keyword search. :1-6. DOI: 10.1007/978-3-540-24676-3_30.
[14] F. Han, J. Qin, H. Zhao, J. Hu. et al.(2014). A general transformation from KP-ABE to searchable encryption. Future Generation Computer Systems.30:107-115. DOI: 10.1007/978-3-540-24676-3_30.
[15] R. Xie, C. He, D. Xie, C. Gao. et al.(2018). A secure ciphertext retrieval scheme against insider KGAs for mobile devices in cloud storage. Security and Communication Networks.2018-7. DOI: 10.1007/978-3-540-24676-3_30.
[16] R. Zhang, H. Imai. (2009). Combining public key encryption with keyword search and public key encryption. IEICE Transaction on Information and Systems.E92-D(5):888-896. DOI: 10.1007/978-3-540-24676-3_30.
[17] D. Sharma, D. Jinwala. (2017). Multiuser searchable encryption with token freshness verification. Security and Communication Networks.2017-16. DOI: 10.1007/978-3-540-24676-3_30.
[18] Q. Zheng, S. Xu, G. Ateniese. VABKS: Verifiable attribute-based keyword search over outsourced encrypted data. :522-530. DOI: 10.1007/978-3-540-24676-3_30.
[19] H. S. Rhee, J. H. Park, W. Susilo, D. H. Lee. et al.(2010). Trapdoor security in a searchable public-key encryption scheme with a designated tester. The Journal of Systems and Software.83(5):763-771. DOI: 10.1007/978-3-540-24676-3_30.
[20] L. Fang, W. Susilo, C. Ge, J. Wang. et al.(2013). Public key encryption with keyword search secure against keyword guessing attacks without random oracle. Information Sciences.238:221-241. DOI: 10.1007/978-3-540-24676-3_30.
[21] J. Baek, R. Safavi-Naini, W. Susilo. Public key encryption with keyword search revisited. .5072:1249-1259. DOI: 10.1007/978-3-540-24676-3_30.
[22] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz. et al.(2005). Searchable encryption revisited: consistency properties, relation to anonymous IBE, and extensions. Advances in Cryptology—CRYPTO 2005.3621:205-222. DOI: 10.1007/978-3-540-24676-3_30.
[23] Y. Chen, J. Zhang, D. Lin, Z. Zhang. et al.(2016). Generic constructions of integrated PKE and PEKS. Designs, Codes and Cryptography.78(2):493-526. DOI: 10.1007/978-3-540-24676-3_30.
[24] F. Vercauteren. (2013). Final report on main computational assumptions in cryptography. ECRPYT.11. DOI: 10.1007/978-3-540-24676-3_30.
[25] P. Jiang, Y. Mu, F. Guo, Q. Wen. et al.(2017). Private keyword-search for database systems against insider attacks. Journal of Computer Science and Technology.32(3):599-617. DOI: 10.1007/978-3-540-24676-3_30.
文献评价指标
浏览 12次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次