首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-06-26
New Insights into Chronological Mobility of Retrotransposons In Vivo
Research Article
Amr. R. Ghanam 1 Jun Cao 1 Xuan Ouyang 1 Xiaoyuan Song 1
Show affiliations
DOI:10.1155/2019/2818415
Received 2019-04-18, accepted for publication 2019-06-03, Published 2019-06-03
PDF
摘要

Tissue aging is the gradual decline of physiological homeostasis accompanied with accumulation of senescent cells, decreased clearance of unwanted biological compounds, and depletion of stem cells. Senescent cells were cell cycle arrested in response to various stimuli and identified using distinct phenotypes and changes in gene expression. Senescent cells that accumulate with aging can compromise normal tissue function and inhibit or stop repair and regeneration. Selective removal of senescent cells can slow the aging process and inhibits age-associated diseases leading to extended lifespans in mice and thus provides a possibility for developing antiaging therapy. To monitor the appearance of senescent cells in vivo and target them, a clearer understanding of senescent cell expression markers is needed. We investigated the age-associated expression of three molecular hallmarks of aging: SA-β-gal, P16INK4a, and retrotransposable elements (RTEs), in different mouse tissues during chronological aging. Our data showed that the expression of these markers is variable with aging in the different tissues. P16INK4a showed consistent increases with age in most tissues, while expression of RTEs was variable among different tissues examined. These data suggest that biological changes occurring with physiological aging may be useful in choosing the appropriate timing of therapeutic interventions to slow the aging process or keep more susceptible organs healthier in the aging process.

授权许可

Copyright © 2019 Amr. R. Ghanam et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xiaoyuan Song.Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, Neurodegenerative Disorder Research Center, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China, ustc.edu.cn.songxy5@ustc.edu.cn

推荐引用方式

Amr. R. Ghanam,Jun Cao,Xuan Ouyang,Xiaoyuan Song. New Insights into Chronological Mobility of Retrotransposons In Vivo. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. T. Reilly, G. J. Faulkner, J. Dubnau, I. Ponomarev. et al.(2013). The role of transposable elements in health and diseases of the central nervous system. The Journal of Neuroscience.33(45):17577-17586. DOI: 10.1038/ncb1744.
[2] M. J. Schafer, T. A. White, K. Iijima, A. J. Haak. et al.(2017). Cellular senescence mediates fibrotic pulmonary disease. Nature Communications.8(1, article 14532). DOI: 10.1038/ncb1744.
[3] N. G. Coufal, J. L. Garcia-Perez, G. E. Peng, G. W. Yeo. et al.(2009). L1 retrotransposition in human neural progenitor cells. Nature.460(7259):1127-1131. DOI: 10.1038/ncb1744.
[4] D. Jurk, C. Wang, S. Miwa, M. Maddick. et al.(2012). Postmitotic neurons develop a p21-dependent senescence-like phenotype driven by a DNA damage response. Aging Cell.11(6):996-1004. DOI: 10.1038/ncb1744.
[5] M. De Cecco, S. W. Criscione, E. J. Peckham, S. Hillenmeyer. et al.(2013). Genomes of replicatively senescent cells undergo global epigenetic changes leading to gene silencing and activation of transposable elements. Aging Cell.12(2):247-256. DOI: 10.1038/ncb1744.
[6] A. D. Hudgins, C. Tazearslan, A. Tare, Y. Zhu. et al.(2018). Age- and tissue-specific expression of senescence biomarkers in mice. Frontiers in Genetics.9:59. DOI: 10.1038/ncb1744.
[7] J. M. Sedivy, J. A. Kreiling, N. Neretti, M. D. Cecco. et al.(2013). Death by transposition - the enemy within?. BioEssays.35(12):1035-1043. DOI: 10.1038/ncb1744.
[8] D. J. Kurz, S. Decary, Y. Hong, J. D. Erusalimsky. et al.(2000). Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. Journal of Cell Science.113:3613-3622. DOI: 10.1038/ncb1744.
[9] A. Brunet, S. L. Berger. (2014). Epigenetics of aging and aging-related disease. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences.69:S17-S20. DOI: 10.1038/ncb1744.
[10] A. R. Ghanam, Q. Xu, S. Ke, M. Azhar. et al.(2017). Shining the light on senescence associated LncRNAs. Aging and Disease.8(2):149-161. DOI: 10.1038/ncb1744.
[11] J. Feser, J. Tyler. (2011). Chromatin structure as a mediator of aging. FEBS Letters.585(13):2041-2048. DOI: 10.1038/ncb1744.
[12] K. A. O'Donnell, K. H. Burns. (2010). Mobilizing diversity: transposable element insertions in genetic variation and disease. Mobile DNA.1(1):21. DOI: 10.1038/ncb1744.
[13] R. T. Bree, C. Stenson-Cox, M. Grealy, L. Byrnes. et al.(2002). Cellular longevity: role of apoptosis and replicative senescence. Biogerontology.3(4):195-206. DOI: 10.1038/ncb1744.
[14] T. B. L. Kirkwood. (2008). A systematic look at an old problem. Nature.451(7179):644-647. DOI: 10.1038/ncb1744.
[15] H. E. Volkman, D. B. Stetson. (2014). The enemy within: endogenous retroelements and autoimmune disease. Nature Immunology.15(5):415-422. DOI: 10.1038/ncb1744.
[16] S. Pal, J. K. Tyler. (2016). Epigenetics and aging. Science Advances.2(7, article e1600584). DOI: 10.1038/ncb1744.
[17] N. E. Sharpless, C. J. Sherr. (2015). Forging a signature of in vivo senescence. Nature Reviews Cancer.15(7):397-408. DOI: 10.1038/ncb1744.
[18] J. Koubova, L. Guarente. (2003). How does calorie restriction work?. Genes & Development.17(3):313-321. DOI: 10.1038/ncb1744.
[19] C. M. Beauséjour, A. Krtolica, F. Galimi, M. Narita. et al.(2003). Reversal of human cellular senescence: roles of the p53 and p16 pathways. The EMBO Journal.22(16):4212-4222. DOI: 10.1038/ncb1744.
[20] J. F. Flood, S. A. Farr, F. E. Kaiser, M. la Regina. et al.(1995). Age-related decrease of plasma testosterone in Samp8 mice - replacement improves age-related impairment of learning and memory. Physiology & Behavior.57(4):669-673. DOI: 10.1038/ncb1744.
[21] B. K. Kennedy, S. L. Berger, A. Brunet, J. Campisi. et al.(2014). Geroscience: linking aging to chronic disease. Cell.159(4):709-713. DOI: 10.1038/ncb1744.
[22] B. M. Hall, V. Balan, A. S. Gleiberman, E. Strom. et al.(2016). Aging of mice is associated with p16(Ink4a)- and -galactosidase-positive macrophage accumulation that can be induced in young mice by senescent cells. Aging.8(7):1294-1315. DOI: 10.1038/ncb1744.
[23] K. H. Burns, J. D. Boeke. (2012). Human transposon tectonics. Cell.149(4):740-752. DOI: 10.1038/ncb1744.
[24] W. Barbot, A. Dupressoir, V. Lazar, T. Heidmann. et al.(2002). Epigenetic regulation of an IAP retrotransposon in the aging mouse: progressive demethylation and de-silencing of the element by its repetitive induction. Nucleic Acids Research.30(11):2365-2373. DOI: 10.1038/ncb1744.
[25] H. L. Levin, J. V. Moran. (2011). Dynamic interactions between transposable elements and their hosts. Nature Reviews Genetics.12(9):615-627. DOI: 10.1038/ncb1744.
[26] E. M. Lowery, A. L. Brubaker, E. Kuhlmann, E. J. Kovacs. et al.(2013). The aging lung. Clinical Interventions in Aging.8:1489-1496. DOI: 10.1038/ncb1744.
[27] C. P. C. Chen, R. L. Chen, J. E. Preston. (2012). The influence of ageing in the cerebrospinal fluid concentrations of proteins that are derived from the choroid plexus, brain, and plasma. Experimental Gerontology.47(4):323-328. DOI: 10.1038/ncb1744.
[28] J. Rajfer. (2003). Decreased testosterone in the aging male: summary and conclusions. Revista de Urología.5:S49-S50. DOI: 10.1038/ncb1744.
[29] J. Krishnamurthy, C. Torrice, M. R. Ramsey, G. I. Kovalev. et al.(2004). expression is a biomarker of aging. The Journal of Clinical Investigation.114(9):1299-1307. DOI: 10.1038/ncb1744.
[30] H. Heyn, N. Li, H. J. Ferreira, S. Moran. et al.(2012). Distinct DNA methylomes of newborns and centenarians. Proceedings of the National Academy of Sciences of the United States of America.109(26):10522-10527. DOI: 10.1038/ncb1744.
[31] J. R. Weinstein, S. Anderson. (2010). The aging kidney: physiological changes. Advances in Chronic Kidney Disease.17(4):302-307. DOI: 10.1038/ncb1744.
[32] M. F. Ahmed, A. K. el-Sayed, H. Chen, R. Zhao. et al.(2019). Direct conversion of mouse embryonic fibroblast to osteoblast cells using hLMP-3 with Yamanaka factors. The International Journal of Biochemistry & Cell Biology.106:84-95. DOI: 10.1038/ncb1744.
[33] R. Mortuza, S. Chen, B. Feng, S. Sen. et al.(2013). High glucose induced alteration of SIRTs in endothelial cells causes rapid aging in a p300 and FOXO regulated pathway. PLoS One.8(1, article e54514). DOI: 10.1038/ncb1744.
[34] A. Moskalev, A. Aliper, Z. Smit-McBride, A. Buzdin. et al.(2014). Genetics and epigenetics of aging and longevity. Cell Cycle.13(7):1063-1077. DOI: 10.1038/ncb1744.
[35] C. G. Musso, J. Reynaldi, B. Martinez, A. Pierángelo. et al.(2011). Renal reserve in the oldest old. International Urology and Nephrology.43(1):253-256. DOI: 10.1038/ncb1744.
[36] L. Hayflick. (1965). The limited in vitro lifetime of human diploid cell strains. Experimental Cell Research.37(3):614-636. DOI: 10.1038/ncb1744.
[37] J. Campisi. (2013). Aging, cellular senescence, and cancer. Annual Review of Physiology.75(1):685-705. DOI: 10.1038/ncb1744.
[38] D. J. Baker, C. Perez-Terzic, F. Jin, K. S. Pitel. et al.(2008). Opposing roles for p16 and p19 in senescence and ageing caused by BubR1 insufficiency. Nature Cell Biology.10(7):825-836. DOI: 10.1038/ncb1744.
[39] R. Cordaux, M. A. Batzer. (2009). The impact of retrotransposons on human genome evolution. Nature Reviews Genetics.10(10):691-703. DOI: 10.1038/ncb1744.
[40] M. Lessard-Beaudoin, M. Laroche, M. J. Demers, G. Grenier. et al.(2015). Characterization of age-associated changes in peripheral organ and brain region weights in C57BL/6 mice. Experimental Gerontology.63:27-34. DOI: 10.1038/ncb1744.
[41] D. J. Baker, B. G. Childs, M. Durik, M. E. Wijers. et al.(2016). Naturally occurring p16-positive cells shorten healthy lifespan. Nature.530(7589):184-189. DOI: 10.1038/ncb1744.
[42] J. K. Baillie, M. W. Barnett, K. R. Upton, D. J. Gerhardt. et al.(2011). Somatic retrotransposition alters the genetic landscape of the human brain. Nature.479(7374):534-537. DOI: 10.1038/ncb1744.
[43] D. J. Baker, T. Wijshake, T. Tchkonia, N. K. LeBrasseur. et al.(2011). Clearance of p16-positive senescent cells delays ageing-associated disorders. Nature.479(7372):232-236. DOI: 10.1038/ncb1744.
[44] C. A. Thomas, A. C. M. Paquola, A. R. Muotri. (2012). LINE-1 retrotransposition in the nervous system. Annual Review of Cell and Developmental Biology.28(1):555-573. DOI: 10.1038/ncb1744.
[45] R. Sun, B. Zhu, K. Xiong, Y. Sun. et al.(2017). Senescence as a novel mechanism involved in -adrenergic receptor mediated cardiac hypertrophy. PLoS One.12(8, article e0182668). DOI: 10.1038/ncb1744.
[46] M. Ogrodnik, S. Miwa, T. Tchkonia, D. Tiniakos. et al.(2017). Cellular senescence drives age-dependent hepatic steatosis. Nature Communications.8(1, article 15691). DOI: 10.1038/ncb1744.
文献评价指标
浏览 1次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次