首页 » 文章 » 文章详细信息
WIRELESS COMMUNICATIONS & MOBILE COMPUTING Volume 2019 ,2019-07-15
The Smaller the Better: Designing Solar Energy Harvesting Sensor Nodes for Long-Range Monitoring
Research Article
Malo Mabon 1 Matthieu Gautier 1 Baptiste Vrigneau 1 Mickaël Le Gentil 1 Olivier Berder 1
Show affiliations
DOI:10.1155/2019/2878545
Received 2019-04-05, accepted for publication 2019-06-13, Published 2019-06-13
PDF
摘要

Emerging Low Power Wide Area Networks (LPWAN) represent a real breakthrough for monitoring applications, since they give the possibility to generate and transmit data over dozens of kilometers while consuming few energy. To further increase the autonomy of such wireless systems, the present paper proposes an original methodology to correctly dimension the key elements of an energy autonomous node, namely, the supercapacitor and the battery that mainly give the form factor of the node. Among the LPWAN candidates, LoRa is chosen for real field experiments with a custom wireless platform that proves its energy neutrality over a finite horizon. Different LoRa configurations are explored, leading to adequate dimensioning. As an example, it is shown that, for the same quality of service, the size of the solar panel needed to keep a LoRa node autonomous in the South of France is less than half of the size required in North of France.

授权许可

Copyright © 2019 Malo Mabon et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Matthieu Gautier.Univ Rennes, CNRS, IRISA, France, cnrs.fr.matthieu.gautier@irisa.fr

推荐引用方式

Malo Mabon,Matthieu Gautier,Baptiste Vrigneau,Mickaël Le Gentil,Olivier Berder. The Smaller the Better: Designing Solar Energy Harvesting Sensor Nodes for Long-Range Monitoring. WIRELESS COMMUNICATIONS & MOBILE COMPUTING ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] X.-C. Le, B. Vrigneau, M. Gautier, M. Mabon. et al.Energy/Reliability Trade-off of LoRa Communications over Fading Channels. :544-548. DOI: 10.1109/MWC.2016.7721743.
[2] P.-D. Gleonec, J. Ardouin, M. Gautier, O. Berder. et al.Architecture exploration of multi-source energy harvester for IoT nodes. :27-32. DOI: 10.1109/MWC.2016.7721743.
[3] C. Goursaud, J. M. Gorce. (2015). Dedicated networks for IoT: PHY / MAC state of the art and challenges. EAI Endorsed Transactions on Internet of Things.1(1):150597. DOI: 10.1109/MWC.2016.7721743.
[4] Zolitron. Z-Node: World's first and only autonomous cognitive sensor. . DOI: 10.1109/MWC.2016.7721743.
[5] Y. Xie, M. Sengupta, M. Dooraghi. (2018). Assessment of uncertainty in the numerical simulation of solar irradiance over inclined PV panels: New algorithms using measurements and modeling tools. Solar Energy.165:55-64. DOI: 10.1109/MWC.2016.7721743.
[6] M. Magno, F. A. Aoudia, M. Gautier, O. Berder. et al.WULoRa: An energy efficient IoT end-node for energy harvesting and heterogeneous communication. :1528-1533. DOI: 10.1109/MWC.2016.7721743.
[7] Trameto. Delivering any-many-multi source, micro-energy harvesting. . DOI: 10.1109/MWC.2016.7721743.
[8] STMicroelectronics. SPV1050 - Ultra low power energy harvester and battery charger with embedded MPPT and LDOs. . DOI: 10.1109/MWC.2016.7721743.
[9] T. I. Inc.. BQ25570 - ultra low power harvester power management IC with boost charger, and nanopower buck converter. . DOI: 10.1109/MWC.2016.7721743.
[10] P. Gleonec, J. Ardouin, M. Gautier, O. Berder. et al.A real-world evaluation of energy budget estimation algorithms for autonomous long range IoT nodes. :561-565. DOI: 10.1109/MWC.2016.7721743.
[11] M. Centenaro, L. Vangelista, A. Zanella, M. Zorzi. et al.(2016). Long-range communications in unlicensed bands: The rising stars in the IoT and smart city scenarios. IEEE Wireless Communications Magazine.23(5):60-67. DOI: 10.1109/MWC.2016.7721743.
[12] T. N. Le, A. Pegatoquet, O. Berder, O. Sentieys. et al.(2015). Energy-neutral design framework for supercapacitor-based autonomous wireless sensor networks. ACM Journal on Emerging Technologies in Computing Systems.12(2):1-19. DOI: 10.1109/MWC.2016.7721743.
[13] M. A. Green, Y. Hishikawa, W. Warta, E. D. Dunlop. et al.(2010). Solar cell efficiency tables (version 50). Wiley Journal of Progress in Photovoltaics: Research and Applications.25(7):668-676. DOI: 10.1109/MWC.2016.7721743.
[14] F. A. Aoudia, M. Gautier, O. Berder. Fuzzy power management for energy harvesting Wireless Sensor Nodes. :1-6. DOI: 10.1109/MWC.2016.7721743.
[15] Micropelt. Self-powered radiator valve. . DOI: 10.1109/MWC.2016.7721743.
[16] Panasonic. Amorphous Silicon Solar Cells Amorphous Photosensors. . DOI: 10.1109/MWC.2016.7721743.
[17] F. Wu, J. Redoute, M. R. Yuce. (2018). WE-Safe: a self-powered wearable IoT sensor network for safety applications based on LoRa. IEEE Access.6:40846-40853. DOI: 10.1109/MWC.2016.7721743.
[18] A. Kansal, J. Hsu, S. Zahedi, M. B. Srivastava. et al.(2007). Power management in energy harvesting sensor networks. ACM Transactions on Embedded Computing Systems.6(4, article 32). DOI: 10.1109/MWC.2016.7721743.
[19] F. A. Aoudia, M. Gautier, M. Magno, M. L. Gentil. et al.(2018). Long-short range communication network leveraging LoRa™ and wake-up receiver. Microprocessors and Microsystems.56:184-192. DOI: 10.1109/MWC.2016.7721743.
[20] F. Ait Aoudia, M. Gautier, O. Berder. (2018). RLMan: an energy manager based on reinforcement learning for energy harvesting wireless sensor networks. IEEE Transactions on Green Communications and Networking.2(2):408-417. DOI: 10.1109/MWC.2016.7721743.
[21] R. J. M. Vullers, R. V. Schaijk, H. J. Visser, J. Penders. et al.(2010). Energy harvesting for autonomous wireless sensor networks. IEEE Journal of Solid-State Circuits.2(2):29-38. DOI: 10.1109/MWC.2016.7721743.
[22] . DOI: 10.1109/MWC.2016.7721743.
[23] W. Lee, M. J. Schubert, B. Ooi, S. J. Ho. et al.(2018). Multi-source energy harvesting and storage for floating wireless sensor network nodes with long range communication capability. IEEE Transactions on Industry Applications.54(3):2606-2615. DOI: 10.1109/MWC.2016.7721743.
[24] I. Analog Devices. LTC3108 - Ultralow voltage step-up converter and power manage. . DOI: 10.1109/MWC.2016.7721743.
文献评价指标
浏览 13次
下载全文 9次
评分次数 0次
用户评分 0.0分
分享 0次