首页 » 文章 » 文章详细信息
Mobile Information Systems Volume 2019 ,2019-07-18
User Association and Small-Cell Base Station On/Off Strategies for Energy Efficiency of Ultradense Networks
Research Article
Jing Gao 1 Qing Ren 2 Pei Shang Gu 2 Xin Song 2
Show affiliations
DOI:10.1155/2019/6871378
Received 2019-03-22, accepted for publication 2019-07-03, Published 2019-07-03
PDF
摘要

The widespread application of wireless mobile services and requirements of ubiquitous access have resulted in drastic growth of the mobile traffic and huge energy consumption in ultradense networks (UDNs). Therefore, energy-efficient design is very important and is becoming an inevitable trend. To improve the energy efficiency (EE) of UDNs, we present a joint optimization method considering user association and small-cell base station (SBS) on/off strategies in UDNs. The problem is formulated as a nonconvex nonlinear programming problem and is then decomposed into two subproblems: user association and SBS on/off strategies. In the user association strategy, users associate with base stations (BSs) according to their movement speeds and utility function values, under the constraints of the signal-to-interference ratio (SINR) and load balancing. In particular, taking care of user mobility, users are associated if their speed exceeds a certain threshold. The macrocell base station (MBS) considers user mobility, which prevents frequent switching between users and SBSs. In the SBS on/off strategy, SBSs are turned off according to their loads and the amount of time required for mobile users to arrive at a given SBS to further improve network energy efficiency. By turning off SBSs, negative impacts on user associations can be reduced. The simulation results show that relative to conventional algorithms, the proposed scheme achieves energy efficiency performance enhancements.

授权许可

Copyright © 2019 Jing Gao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jing Gao.School of Control Engineering, Northeastern University at Qinhuangdao, Hebei 066004, China, neuq.edu.cn.summergj@126.com

推荐引用方式

Jing Gao,Qing Ren,Pei Shang Gu,Xin Song. User Association and Small-Cell Base Station On/Off Strategies for Energy Efficiency of Ultradense Networks. Mobile Information Systems ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Q. Liu, J. Shi. (2018). Base station sleep and spectrum allocation in heterogeneous ultra-dense networks. Wireless Personal Communications.98(4):3611-3627. DOI: 10.1109/mvt.2014.2380581.
[2] H. Zhang, H. Liu, J. Cheng, V. C. M. Leung. et al.(2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications.66(4):1705-1716. DOI: 10.1109/mvt.2014.2380581.
[3] A. A. Abdulkafi, T. S. Kiong, D. Chieng, A. Ting. et al.(2014). Energy efficiency improvements in heterogeneous network through traffic load balancing and sleep mode mechanisms. Wireless Personal Communications.75(4):2151-2164. DOI: 10.1109/mvt.2014.2380581.
[4] H. Wang, S. Chen, M. Ai, H. Xu. et al.(2017). Localized mobility management for 5G ultra dense network. IEEE Transactions on Vehicular Technology.66(9):8535-8552. DOI: 10.1109/mvt.2014.2380581.
[5] D. Soldani, A. Manzalini. (2015). Horizon 2020 and beyond: on the 5G operating system for a true digital society. IEEE Vehicular Technology Magazine.10(1):32-42. DOI: 10.1109/mvt.2014.2380581.
[6] D. Wu, Q. Wu, Y. Xu, Y.-C. Liang. et al.(2017). QoE and energy aware resource allocation in small cell networks with power selection, load management, and channel allocation. IEEE Transactions on Vehicular Technology.66(8):7461-7473. DOI: 10.1109/mvt.2014.2380581.
[7] C. Liu, B. Natarajan, H. X. Xia. (2016). Small cell base station sleep strategies for energy efficiency. IEEE Transactions on Vehicular Technology.65(3):1652-1661. DOI: 10.1109/mvt.2014.2380581.
[8] C. C. Coskun, E. Ayanoglu. (2018). Energy- and spectral-efficient resource allocation algorithm for heterogeneous networks. IEEE Transactions on Vehicular Technology.67(1):590-603. DOI: 10.1109/mvt.2014.2380581.
[9] L. Qi, L. Yiqun. Energy conservation schemes based on mobility modeling in small cell networks. :1-4. DOI: 10.1109/mvt.2014.2380581.
[10] T. Zhou, Z. Liu, J. Zhao, C. Li. et al.(2018). Joint user association and power control for load balancing in downlink heterogeneous cellular networks. IEEE Transactions on Vehicular Technology.67(3):2582-2593. DOI: 10.1109/mvt.2014.2380581.
[11] S. Kim, S. Choi, B. G. Lee. (2013). A joint algorithm for base station operation and user association in heterogeneous networks. IEEE Communications Letters.17(8):1552-1555. DOI: 10.1109/mvt.2014.2380581.
[12] X. Ge, X. Li, H. Jin, J. Cheng. et al.(2018). Joint user association and user scheduling for load balancing in heterogeneous networks. IEEE Transactions on Wireless Communications.17(5):3211-3225. DOI: 10.1109/mvt.2014.2380581.
[13] A. Gupta, R. K. Jha. (2015). A survey of 5G network: a survey of 5G network: architecture and emerging technologies. IEEE Access.3:1206-1232. DOI: 10.1109/mvt.2014.2380581.
[14] J. G. Andrews. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine.51(3):136-144. DOI: 10.1109/mvt.2014.2380581.
[15] Q. Ye, B. Rong, Y. Chen, M. Al-Shalash. et al.(2013). User association for load balancing in heterogeneous cellular networks. IEEE Transactions on Wireless Communications.12(6):2706-2716. DOI: 10.1109/mvt.2014.2380581.
[16] H. Boostanimehr, V. K. Bhargava. (2015). Unified and distributed QoS-driven cell association algorithms in heterogeneous networks. IEEE Transactions on Wireless Communications.14(3):1650-1662. DOI: 10.1109/mvt.2014.2380581.
[17] E. Mugume, D. K. C. So. (2017). User association in energy-aware dense heterogeneous cellular networks. IEEE Transactions on Wireless Communications.16(3):1713-1726. DOI: 10.1109/mvt.2014.2380581.
[18] N. Yu, Y. Miao, L. Mu, H. Du. et al.(2016). Minimizing energy cost by dynamic switching on/off base stations in cellular networks. IEEE Transactions on Wireless Communications.15(11):7457-7469. DOI: 10.1109/mvt.2014.2380581.
[19] W. Wang, G. Shen. Energy efficiency of heterogeneous cellular network. :1-5. DOI: 10.1109/mvt.2014.2380581.
[20] K. Davaslioglu, E. Ayanoglu. (2014). Quantifying potential energy efficiency gain in green cellular wireless networks. IEEE Communications Surveys & Tutorials.16(4):2065-2091. DOI: 10.1109/mvt.2014.2380581.
[21] J. Xiao, C. Yang, A. Anpalagan, Q. Ni. et al.(2018). Joint interference management in ultra-dense small-cell networks: a multi-domain coordination perspective. IEEE Transactions on Communications.66(11):5470-5481. DOI: 10.1109/mvt.2014.2380581.
[22] D. Lopez-Perez, I. Guvenc, G. D. L. Roche, M. Kountouris. et al.(2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications.18(3):22-30. DOI: 10.1109/mvt.2014.2380581.
[23] H. Park, Y. Lim. (2018). Energy-effective power control algorithm with mobility prediction for 5G heterogeneous cloud radio access network. Sensors (Basel).18(9):2904. DOI: 10.1109/mvt.2014.2380581.
[24] D. Feng, C. Jiang, G. Lim, L. J. Cimini. et al.(2013). A survey of energy-efficient wireless communications. IEEE Communications Surveys & Tutorials.15(1):167-178. DOI: 10.1109/mvt.2014.2380581.
[25] T. Zhou, N. Jiang, Z. Liu, C. Li. et al.(2018). Joint cell activation and selection for green communications in ultra-dense heterogeneous networks. IEEE Access.6:1894-1904. DOI: 10.1109/mvt.2014.2380581.
[26] C.-X. Wang, F. Haider, X. Gao. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine.52(2):122-130. DOI: 10.1109/mvt.2014.2380581.
[27] X. Chai, Z. Zhang, K. Long. (2018). Joint spectrum-sharing and base station sleep model for improving energy efficiency of heterogeneous networks. IEEE Systems Journal.12(1):560-570. DOI: 10.1109/mvt.2014.2380581.
[28] X. Huang, S. Tang, Q. Zheng, D. Zhang. et al.(2018). Dynamic femtocell gNB on/off strategies and seamless dual connectivity in 5G heterogeneous cellular networks. IEEE Access.6:21359-21368. DOI: 10.1109/mvt.2014.2380581.
[29] S. Cai, Y. Che, L. Duan, J. Wang. et al.(2016). Green 5G heterogeneous networks through dynamic small-cell operation. IEEE Journal on Selected Areas in Communications.34(5):1103-1115. DOI: 10.1109/mvt.2014.2380581.
[30] Y. Jin, L. Qiu. (2013). Joint user association and interference coordination in heterogeneous cellular networks. IEEE Communications Letters.17(12):2296-2299. DOI: 10.1109/mvt.2014.2380581.
[31] T. Bilen, B. Canberk, K. R. Chowdhury. (2017). Handover management in software-defined ultra-dense 5G networks. IEEE Network.31(4):49-55. DOI: 10.1109/mvt.2014.2380581.
[32] J. Zhao, Y. Liu, K. K. Chai, A. Nallanathan. et al.(2017). Spectrum allocation and power control for non-orthogonal multiple access in HetNets. IEEE Transactions on Wireless Communications.16(9):5825-5837. DOI: 10.1109/mvt.2014.2380581.
[33] Y. Chen, J. Li, Z. Lin, G. Mao. et al.(2016). User association with unequal user priorities in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology.65(9):7374-7388. DOI: 10.1109/mvt.2014.2380581.
[34] K. Shen, W. Yu. (2014). Distributed pricing-based user association for downlink heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications.32(6):1100-1113. DOI: 10.1109/mvt.2014.2380581.
[35] L. Tang, W. Wang, Y. Wang, Q. Chen. et al.(2017). An energy-saving algorithm with joint user association, clustering, and on/off strategies in dense heterogeneous networks. IEEE Access.5:12988-13000. DOI: 10.1109/mvt.2014.2380581.
[36] X. G. Huang, Z. F. Zhang, W. P. Dai. Energy-efficient femtocells active/idle control and load balancing in heterogeneous networks. :237-247. DOI: 10.1109/mvt.2014.2380581.
[37] M. M. Mowla, I. Ahmad, D. Habibi, Q. V. Phung. et al.(2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking.1(3):264-280. DOI: 10.1109/mvt.2014.2380581.
文献评价指标
浏览 11次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次