首页 » 文章 » 文章详细信息
Journal of Immunology Research Volume 2019 ,2019-07-16
Cross-Disease Innate Gene Signature: Emerging Diversity and Abundance in RA Comparing to SLE and SSc
Research Article
Anna Petrackova 1 Pavel Horak 2 Martin Radvansky 3 Martina Skacelova 2 Regina Fillerova 1 Milos Kudelka 3 Andrea Smrzova 2 Frantisek Mrazek 1 Eva Kriegova 1
Show affiliations
Received 2019-04-03, accepted for publication 2019-06-12, Published 2019-06-12

Overactivation of the innate immune system together with the impaired downstream pathway of type I interferon-responding genes is a hallmark of rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), and systemic sclerosis (SSc). To date, limited data on the cross-disease innate gene signature exists among those diseases. We compared therefore an innate gene signature of Toll-like receptors (TLRs), seven key members of the interleukin (IL)1/IL1R family, and CXCL8/IL8 in peripheral blood mononuclear cells from well-defined patients with active stages of RA (n=36, DAS28≥3.2), SLE (n=28, SLEDAI>6), and SSc (n=22, revised EUSTAR index>2.25). Emerging diversity and abundance of the innate signature in RA patients were detected: RA was characterized by the upregulation of TLR3, TLR5, IL1RAP/IL1R3, IL18R1, and SIGIRR/IL1R8 when compared to SSc (Pcorr<0.02) and of TLR2, TLR5, and SIGIRR/IL1R8 when compared to SLE (Pcorr<0.02). Applying the association rule analysis, six rules (combinations and expression of genes describing disease) were identified for RA (most frequently included high TLR3 and/or IL1RAP/IL1R3) and three rules for SLE (low IL1RN and IL18R1) and SSc (low TLR5 and IL18R1). This first cross-disease study identified emerging heterogeneity in the innate signature of RA patients with many upregulated innate genes compared to that of SLE and SSc.


Copyright © 2019 Anna Petrackova et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


Eva Kriegova.Department of Immunology, Faculty of Medicine and Dentistry, Palacky University Olomouc and University Hospital, Olomouc, Czech Republic, upol.cz.eva.kriegova@email.cz


Anna Petrackova,Pavel Horak,Martin Radvansky,Martina Skacelova,Regina Fillerova,Milos Kudelka,Andrea Smrzova,Frantisek Mrazek,Eva Kriegova. Cross-Disease Innate Gene Signature: Emerging Diversity and Abundance in RA Comparing to SLE and SSc. Journal of Immunology Research ,Vol.2019(2019)



[1] K. C. M. Santegoets, L. van Bon, W. B. van den Berg, M. H. Wenink. et al.(2011). Toll-like receptors in rheumatic diseases: are we paying a high price for our defense against bugs?. FEBS Letters.585(23):3660-3666. DOI: 10.1016/j.jaci.2017.08.026.
[2] Y. W. Wu, W. Tang, J. P. Zuo. (2015). Toll-like receptors: potential targets for lupus treatment. Acta Pharmacologica Sinica.36(12):1395-1407. DOI: 10.1016/j.jaci.2017.08.026.
[3] T. Celhar, A. M. Fairhurst. (2014). Toll-like receptors in systemic lupus erythematosus: potential for personalized treatment. Frontiers in Pharmacology.5:265. DOI: 10.1016/j.jaci.2017.08.026.
[4] M. Hahsler, C. Buchta, B. Gruen, K. Hornik. et al.(2018). arules: Mining Association Rules and Frequent Itemsets. R package version 1.6-1. . DOI: 10.1016/j.jaci.2017.08.026.
[5] N. D. Chamberlain, S. J. Kim, O. M. Vila, M. V. Volin. et al.(2013). Ligation of TLR7 by rheumatoid arthritis synovial fluid single strand RNA induces transcription of TNF in monocytes. Annals of the Rheumatic Diseases.72(3):418-426. DOI: 10.1016/j.jaci.2017.08.026.
[6] J. Myslivec. (2012). andrews: Andrews curves. R package version 1.0. . DOI: 10.1016/j.jaci.2017.08.026.
[7] C. K. Edwards, J. S. Green, H. D. Volk, M. Schiff. et al.(2012). Combined anti-tumor necrosis factor- therapy and DMARD therapy in rheumatoid arthritis patients reduces inflammatory gene expression in whole blood compared to DMARD therapy alone. Frontiers in Immunology.3:366. DOI: 10.1016/j.jaci.2017.08.026.
[8] H. Aucott, A. Sowinska, H. E. Harris, P. Lundback. et al.(2018). Ligation of free HMGB1 to TLR2 in the absence of ligand is negatively regulated by the C-terminal tail domain. Molecular Medicine.24(1):19. DOI: 10.1016/j.jaci.2017.08.026.
[9] C. A. Dinarello. (2009). Immunological and inflammatory functions of the interleukin-1 family. Annual Review of Immunology.27(1):519-550. DOI: 10.1016/j.jaci.2017.08.026.
[10] X. T. Shao, L. Feng, L. J. Gu, L. J. Wu. et al.(2009). Expression of interleukin-18, IL-18BP, and IL-18R in serum, synovial fluid, and synovial tissue in patients with rheumatoid arthritis. Clinical and Experimental Medicine.9(3):215-221. DOI: 10.1016/j.jaci.2017.08.026.
[11] R. Agrawal, T. Imielinski, A. N. Swami. Mining association rules between sets of items in large databases. :207-216. DOI: 10.1016/j.jaci.2017.08.026.
[12] S. Ramírez-Pérez, U. de la Cruz-Mosso, J. Hernández-Bello, G. E. Martínez-Bonilla. et al.(2017). High expression of interleukine-1 receptor antagonist in rheumatoid arthritis: association with genotype. Autoimmunity.50(8):468-475. DOI: 10.1016/j.jaci.2017.08.026.
[13] P. Gasse, C. Mary, I. Guenon, N. Noulin. et al.(2007). IL-1R1/MyD88 signaling and the inflammasome are essential in pulmonary inflammation and fibrosis in mice. The Journal of Clinical Investigation.117(12):3786-3799. DOI: 10.1016/j.jaci.2017.08.026.
[14] R. M. Clancy, A. J. Markham, J. P. Buyon. (2016). Endosomal Toll-like receptors in clinically overt and silent autoimmunity. Immunological Reviews.269(1):76-84. DOI: 10.1016/j.jaci.2017.08.026.
[15] E. Pretorius, O. O. Akeredolu, P. Soma, D. B. Kell. et al.(2017). Major involvement of bacterial components in rheumatoid arthritis and its accompanying oxidative stress, systemic inflammation and hypercoagulability. Experimental Biology and Medicine.242(4):355-373. DOI: 10.1016/j.jaci.2017.08.026.
[16] D. Aletaha, T. Neogi, A. J. Silman, J. Funovits. et al.(2010). 2010 rheumatoid arthritis classification criteria: an American College of Rheumatology/European League Against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases.69(9):1580-1588. DOI: 10.1016/j.jaci.2017.08.026.
[17] S. Bhattacharyya, J. Varga. (2015). Emerging roles of innate immune signaling and toll-like receptors in fibrosis and systemic sclerosis. Current Rheumatology Reports.17(1):474. DOI: 10.1016/j.jaci.2017.08.026.
[18] G. Kaplanski. (2018). Interleukin-18: biological properties and role in disease pathogenesis. Immunological Reviews.281(1):138-153. DOI: 10.1016/j.jaci.2017.08.026.
[19] C. García-Osorio, C. Fyfe. (2005). Visualization of high-dimensional data via orthogonal curves. Journal of Universal Computer Science.11:1806-1819. DOI: 10.1016/j.jaci.2017.08.026.
[20] R. E. Moustafa. (2011). Andrews curves. WIREs Computational Statistics.3(4):373-382. DOI: 10.1016/j.jaci.2017.08.026.
[21] S. C. Chen, T. H. Tsai, C. H. Chung, W. H. Li. et al.(2015). Dynamic association rules for gene expression data analysis. BMC Genomics.16(1):786. DOI: 10.1016/j.jaci.2017.08.026.
[22] S. Alagukumar, R. Lawrance. (2015). A selective analysis of microarray data using association rule mining. Procedia Computer Science.47:3-12. DOI: 10.1016/j.jaci.2017.08.026.
[23] M. A. Martínez-Godínez, M. D. Cruz-Domínguez, L. J. Jara, A. Domínguez-López. et al.(2015). Expression of NLRP3 inflammasome, cytokines and vascular mediators in the skin of systemic sclerosis patients. The Israel Medical Association Journal.17:5-10. DOI: 10.1016/j.jaci.2017.08.026.
[24] P. Niedzielski, M. Mleczek, A. Budka, P. Rzymski. et al.(2017). A screening study of elemental composition in 12 marketable mushroom species accessible in Poland. European Food Research and Technology.243(10):1759-1771. DOI: 10.1016/j.jaci.2017.08.026.
[25] H. Ihn, S. Sato, M. Fujimoto, K. Kikuchi. et al.(1994). Demonstration of interleukin 8 in serum samples of patients with localized scleroderma. Archives of Dermatology.130(10):1327-1328. DOI: 10.1016/j.jaci.2017.08.026.
[26] D. F. Andrews. (1972). Plots of high-dimensional data. Biometrics.28(1):125-136. DOI: 10.1016/j.jaci.2017.08.026.
[27] M. Iwahashi, M. Yamamura, T. Aita, A. Okamoto. et al.(2004). Expression of Toll-like receptor 2 on CD16+ blood monocytes and synovial tissue macrophages in rheumatoid arthritis. Arthritis and Rheumatism.50(5):1457-1467. DOI: 10.1016/j.jaci.2017.08.026.
[28] N. D. Chamberlain, O. M. Vila, M. V. Volin, S. Volkov. et al.(2012). TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF- levels. Journal of Immunology.189(1):475-483. DOI: 10.1016/j.jaci.2017.08.026.
[29] F. A. H. Cooles, A. E. Anderson, D. W. Lendrem, J. Norris. et al.(2018). The interferon gene signature is increased in patients with early treatment-naive rheumatoid arthritis and predicts a poorer response to initial therapy. The Journal of Allergy and Clinical Immunology.141(1):445-448.e4. DOI: 10.1016/j.jaci.2017.08.026.
[30] P. Laurent, V. Sisirak, E. Lazaro, C. Richez. et al.(2018). Innate immunity in systemic sclerosis fibrosis: recent advances. Frontiers in Immunology.9:1702. DOI: 10.1016/j.jaci.2017.08.026.
[31] P. Lacerte, A. Brunet, B. Egarnes, B. Duchêne. et al.(2016). Overexpression of TLR2 and TLR9 on monocyte subsets of active rheumatoid arthritis patients contributes to enhance responsiveness to TLR agonists. Arthritis Research & Therapy.18(1):10. DOI: 10.1016/j.jaci.2017.08.026.
[32] Y. Lai, C. Xue, Y. Liao, L. Huang. et al.(2016). Expression profiles of toll-like receptor signaling pathway related genes in microscopic polyangiitis in Chinese people. International Journal of Clinical and Experimental Pathology.9:5515-5524. DOI: 10.1016/j.jaci.2017.08.026.
[33] G. Cavalli, M. Koenders, V. Kalabokis, J. Kim. et al.(2016). Treating experimental arthritis with the innate immune inhibitor interleukin-37 reduces joint and systemic inflammation. Rheumatology.55(12):2220-2229. DOI: 10.1016/j.jaci.2017.08.026.
[34] S. Kim, Z. Chen, N. D. Chamberlain, A. B. Essani. et al.(2014). Ligation of TLR5 promotes myeloid cell infiltration and differentiation into mature osteoclasts in rheumatoid arthritis and experimental arthritis. Journal of Immunology.193(8):3902-3913. DOI: 10.1016/j.jaci.2017.08.026.
[35] E. Ochodkova, S. Zehnalova, M. Kudelka. (2017). Graph construction based on local representativeness. Computing and Combinatorics. COCOON 2017. Lecture Notes in Computer Science, vol 10392:654-665. DOI: 10.1016/j.jaci.2017.08.026.
[36] V. R. Falkenberg, T. Whistler, J. R. Murray, E. R. Unger. et al.(2011). Identification of phosphoglycerate kinase 1 (PGK1) as a reference gene for quantitative gene expression measurements in human blood RNA. BMC Research Notes.4(1):324. DOI: 10.1016/j.jaci.2017.08.026.
[37] F. K. Tan, X. Zhou, M. D. Mayes, P. Gourh. et al.(2006). Signatures of differentially regulated interferon gene expression and vasculotrophism in the peripheral blood cells of systemic sclerosis patients. Rheumatology.45(6):694-702. DOI: 10.1016/j.jaci.2017.08.026.
[38] T. Tomankova, E. Kriegova, R. Fillerova, P. Luzna. et al.(2014). Comparison of periprosthetic tissues in knee and hip joints: differential expression of CCL3 and DC-STAMP in total knee and hip arthroplasty and similar cytokine profiles in primary knee and hip osteoarthritis. Osteoarthritis and Cartilage.22(11):1851-1860. DOI: 10.1016/j.jaci.2017.08.026.
[39] T. Celhar, H. Yasuga, H. Y. Lee, O. Zharkova. et al.(2018). Toll-like receptor 9 deficiency breaks tolerance to RNA-associated antigens and up-regulates Toll-like receptor 7 protein in Sle1 mice. Arthritis & Rhematology.70(10):1597-1609. DOI: 10.1016/j.jaci.2017.08.026.
[40] J. Rodríguez-Carrio, M. Alperi-López, P. López, F. J. Ballina-García. et al.(2018). Heterogeneity of the type I interferon signature in rheumatoid arthritis: a potential limitation for its use as a clinical biomarker. Frontiers in Immunology.8:2007. DOI: 10.1016/j.jaci.2017.08.026.
[41] L. A. B. Joosten, S. Abdollahi-Roodsaz, C. A. Dinarello, L. O'Neill. et al.(2016). Toll-like receptors and chronic inflammation in rheumatic diseases: new developments. Nature Reviews Rheumatology.12(6):344-357. DOI: 10.1016/j.jaci.2017.08.026.
[42] C. A. Dinarello. (2018). Overview of the IL-1 family in innate inflammation and acquired immunity. Immunological Reviews.281(1):8-27. DOI: 10.1016/j.jaci.2017.08.026.
[43] K. M. Pollard, G. M. Escalante, H. Huang, K. M. Haraldsson. et al.(2017). Induction of systemic autoimmunity by a xenobiotic requires endosomal TLR trafficking and signaling from the late endosome and endolysosome but not type I IFN. Journal of Immunology.199(11):3739-3747. DOI: 10.1016/j.jaci.2017.08.026.
[44] Q. Q. Huang, Y. Ma, A. Adebayo, R. M. Pope. et al.(2007). Increased macrophage activation mediated through Toll-like receptors in rheumatoid arthritis. Arthritis and Rheumatism.56(7):2192-2201. DOI: 10.1016/j.jaci.2017.08.026.
[45] H. A. Elshabrawy, A. E. Essani, Z. Szekanecz, D. A. Fox. et al.(2017). TLRs, future potential therapeutic targets for RA. Autoimmunity Reviews.16(2):103-113. DOI: 10.1016/j.jaci.2017.08.026.
[46] F. van den Hoogen, D. Khanna, J. Fransen, S. R. Johnson. et al.(2013). 2013 classification criteria for systemic sclerosis: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Annals of the Rheumatic Diseases.72(11):1747-1755. DOI: 10.1016/j.jaci.2017.08.026.
[47] F. Brentano, O. Schorr, R. E. Gay, S. Gay. et al.(2005). RNA released from necrotic synovial fluid cells activates rheumatoid arthritis synovial fibroblasts via Toll-like receptor 3. Arthritis and Rheumatism.52(9):2656-2665. DOI: 10.1016/j.jaci.2017.08.026.
[48] S. J. Kim, Z. Chen, N. D. Chamberlain, M. V. Volin. et al.(2013). Angiogenesis in rheumatoid arthritis is fostered directly by Toll-like receptor 5 ligation and indirectly through interleukin-17 induction. Arthritis and Rheumatism.65(8):2024-2036. DOI: 10.1016/j.jaci.2017.08.026.
[49] A. Petrackova, P. Horak, M. Radvansky, R. Fillerova. et al.(2019). Revealed heterogeneity in rheumatoid arthritis based on multivariate innate signature analysis. Clinical and Experimental Rheumatology.37. DOI: 10.1016/j.jaci.2017.08.026.
[50] S. Jiang, X. Li, N. J. Hess, Y. Guan. et al.(2016). TLR10 is a negative regulator of both MyD88-dependent and -independent TLR signaling. Journal of Immunology.196(9):3834-3841. DOI: 10.1016/j.jaci.2017.08.026.
[51] M. C. Hochberg. (1997). Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus. Arthritis and Rheumatism.40(9):1725. DOI: 10.1016/j.jaci.2017.08.026.
[52] M. Oosting, S. C. Cheng, J. M. Bolscher, R. Vestering-Stenger. et al.(2014). Human TLR10 is an anti-inflammatory pattern-recognition receptor. Proceedings of the National Academy of Sciences of the United States of America.111(42):E4478-E4484. DOI: 10.1016/j.jaci.2017.08.026.
浏览 5次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次