首页 » 文章 » 文章详细信息
International Journal of Antennas and Propagation Volume 2019 ,2019-07-16
Electromagnetic Model of a SPR Sensor Coupled to Array of Nanoparticles by Periodic Green’s Function
Research Article
André Cruz 1 Victor Dmitriev 1 Tommaso Del Rosso 2 Karlo Costa 1
Show affiliations
DOI:10.1155/2019/7548243
Received 2019-03-28, accepted for publication 2019-06-03, Published 2019-06-03
PDF
摘要

In this paper, we present a theoretical study of a Surface Plasmon Resonance Sensor in the Surface Plasmon Coupled Emission (SPCE) configuration. A periodic planar array of core-shell gold nanoparticles (AuNps), chemically functionalized to aggregate fluorescent molecules, is coupled to the sensor structure. These nanoparticles, characterized as target particles, are modeled as equivalent nanodipoles. The electromagnetic modeling of the device was performed using the spectral representation of the magnetic potential by Periodic Green’s Function (PGF). Parametric results of spatial electric and magnetic fields are presented at wavelength 632.8nm. We also present a spectral analysis of the magnetic potential, where we verify the appearance of the surface plasmon polariton (SPP) waves. To validate the analytical method, we compared the limit case of small concentration of nanoparticles with published works. We also present a convergence analysis of the solution as a function of the concentration of nanoparticles in the periodic array. The results show that the theoretical method of PFG can be efficiently used as a tool for design of this sensing device.

授权许可

Copyright © 2019 André Cruz et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

André Cruz.Department of Electrical Engineering, Federal University of Pará, Belém-PA, Brazil, ufpa.br.andcruz@ufpa.br

推荐引用方式

André Cruz,Victor Dmitriev,Tommaso Del Rosso,Karlo Costa. Electromagnetic Model of a SPR Sensor Coupled to Array of Nanoparticles by Periodic Green’s Function. International Journal of Antennas and Propagation ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Del Rosso, Q. Zaman, M. Cremona, O. Pandoli. et al.(2018). SPR sensors for monitoring the degradation processes of Eu (dbm) 3 (phen) and Alq3 thin films under atmospheric and UVA exposure. Applied Surface Science.442:759-766. DOI: 10.14209/jcis.2018.2.
[2] D. G. Dudley. (1994). Mathematical Foundations for Electromagnetic Theory. DOI: 10.14209/jcis.2018.2.
[3] D. W. Pohl, A. Alu, N. Engheta, F. Marquier. et al.(2013). Optical Antennas. DOI: 10.14209/jcis.2018.2.
[4] T. Špringer, M. L. Ermini, B. Špačková, J. Jabloňků. et al.(2014). Enhancing sensitivity of surface plasmon resonance biosensors by functionalized gold nanoparticles: size matters. Analytical Chemistry.86(20):10350-10356. DOI: 10.14209/jcis.2018.2.
[5] S. A. Maier. (2007). Plasmonics: Fundamentals and Applications. DOI: 10.14209/jcis.2018.2.
[6] R. Marani, M. Grande, V. Petruzelli, A. D'Orazio. et al.(2012). Plasmonic bandgaps in 1D arrays of slits on metal layers excited by out-of-plane sources. International Journal of Optics.2012-12. DOI: 10.14209/jcis.2018.2.
[7] K. Q. Da Costa, J. S. Costa, V. Dmitriev, T. Del Rosso. et al.Analysis of surface plasmon resonance sensor coupled to periodic array of gold nanoparticles. :1-5. DOI: 10.14209/jcis.2018.2.
[8] M. A. Cooper. (2002). Optical biosensors in drug discovery. Nature Reviews Drug Discovery.1(7):515-528. DOI: 10.14209/jcis.2018.2.
[9] W. C. Chew. (1995). Waves and Fields in Inhomogeneous Media. DOI: 10.14209/jcis.2018.2.
[10] N. W. P. de Souza, J. S. Costa, R. C. Santos, A. F. S. da Cruz. et al.(2017). Modal analysis of surface plasmon resonance sensor coupled to periodic array of core-shell metallic nanoparticles. Resonance. DOI: 10.14209/jcis.2018.2.
[11] A. Cruz, K. Costa. (2018). Extinction efficiency and electromagnetic fields of isolated and coupled core-shell nanoparticles. Journal of Communication and Information Systems.33(1). DOI: 10.14209/jcis.2018.2.
[12] J. Malicka, I. Gryczynski, Z. Gryczynski, J. R. Lakowicz. et al.(2004). Use of surface plasmon-coupled emission to measure DNA hybridization. Journal of Biomolecular Screening.9(3):208-215. DOI: 10.14209/jcis.2018.2.
[13] C. A. Balanis. (1999). Advanced Engineering Electromagnetics. DOI: 10.14209/jcis.2018.2.
[14] D. Marsh. (2009). Reaction fields in the environment of fluorescent probes: polarity profiles in membranes. Biophysical Journal.96(7):2549-2558. DOI: 10.14209/jcis.2018.2.
[15] A. F. S. Cruz, N. W. P. de Souza, V. Dmitriev, K. Q. Costa. et al.(2018). Modelo Eletromagnético de Sensor Plasmônico Acoplado a Arranjo de Nanopartículas via PGF 3D. MOMAG 2018, 2018, Santa Rita do Sapucaí - MG. 13º CBMag - Congresso Brasileiro de Eletromagnetismo 18º SBMO - Simpósio Brasileiro de Micro-ondas e Optoeletrônica INATEL, 2018. DOI: 10.14209/jcis.2018.2.
[16] A. F. Cruz, K. Q. Costa, V. Dmitriev, T. Del Rosso. et al.Spectral analysis of a surface plasmon resonance sensor of nanoparticles by periodic green function. :1-5. DOI: 10.14209/jcis.2018.2.
[17] J. Homola. (2006). Surface Plasmon Resonance Based Sensors. DOI: 10.14209/jcis.2018.2.
[18] N. W. P. Souza. (2018). Análise de Sensores Plasmônicos Baseados em Nano Estruturas Estratificadas Utilizando o Método das Imagens Complexas Discretas [Doctoral thesis]. DOI: 10.14209/jcis.2018.2.
[19] P. H. Chung, C. Tregidgo, K. Suhling. (2016). Determining a fluorophore’s transition dipole moment from fluorescence lifetime measurements in solvents of varying refractive index. Methods and Applications in Fluorescence.4(4). DOI: 10.14209/jcis.2018.2.
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次