首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-16
Screening and Bioinformatics Analysis of IgA Nephropathy Gene Based on GEO Databases
Research Article
Wang Qian 1 Wang Xiaoyi 2 Ye Zi 1
Show affiliations
DOI:10.1155/2019/8794013
Received 2018-11-21, accepted for publication 2019-05-30, Published 2019-05-30
PDF
摘要

Purpose. To identify novel biomarkers of IgA nephropathy (IgAN) through bioinformatics analysis and elucidate the possible molecular mechanism. Methods. The GSE93798 and GSE73953 datasets containing microarray data from IgAN patients and healthy controls were downloaded from the GEO database and analyzed by the GEO2R web tool to obtain different expressed genes (DEGs). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis, protein-protein interaction (PPI), and Biological Networks Gene Oncology tool (BiNGO) were then performed to elucidate the molecular mechanism of IgAN. Results. A total of 223 DEGs were identified, of which 21 were hub genes, and involved in inflammatory response, cellular response to lipopolysaccharide, transcription factor activity, extracellular exosome, TNF signaling pathway, and MAPK signaling pathway. Conclusions. TNF and MAPK pathways likely form the basis of IgAN progression, and JUN/JUNB, FOS, NR4A1/2, EGR1, and FOSL1/2 are novel prognostic biomarkers of IgAN.

授权许可

Copyright © 2019 Wang Qian et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Wang Qian.Department of Nephrology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China, shutcm.edu.cn.wangqianwater1988@163.com

推荐引用方式

Wang Qian,Wang Xiaoyi,Ye Zi. Screening and Bioinformatics Analysis of IgA Nephropathy Gene Based on GEO Databases. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Y. Guo, Y. Liao. (2017). miR-200bc/429 cluster alleviates inflammation in IgA nephropathy by targeting TWEAK/Fn14. International Immunopharmacology.52:150-155. DOI: 10.18632/oncotarget.9033.
[2] S. A. Mezzano, M. Barria, M. A. Droguett, M. E. Burgos. et al.(2001). Tubular NF-B and AP-1 activation in human proteinuric renal disease. Kidney International.60(4):1366-1377. DOI: 10.18632/oncotarget.9033.
[3] V. P. Sukhatme, X. M. Cao, L. C. Chang, C.-H. Tsai-Morris. et al.(1988). A zinc finger-encoding gene coregulated with during growth and differentiation, and after cellular depolarization. Cell.53(1):37-43. DOI: 10.18632/oncotarget.9033.
[4] T. Takemura, M. Okada, N. Akano. (1996). Proto-oncogene expression in human glomerular diseases. The Journal of Pathology.178(3):343-351. DOI: 10.18632/oncotarget.9033.
[5] V. P. Sukhatme. (1992). The Egr transcription factor family: From signal transduction to kidney differentiation. Kidney International.41(3):550-553. DOI: 10.18632/oncotarget.9033.
[6] H. Bao, S. Hu, C. Zhang, S. Shi. et al.(2014). Inhibition of miRNA-21 prevents fibrogenic activation in podocytes and tubular cells in IgA nephropathy. Biochemical and Biophysical Research Communications.444(4):455-460. DOI: 10.18632/oncotarget.9033.
[7] M. Rastaldi. (1998). Transforming growth factor-beta, endothelin-1, and c-fos expression in necrotizing/crescentic IgA glomerulonephritis. Nephrology Dialysis Transplantation.13(7):1668-1674. DOI: 10.18632/oncotarget.9033.
[8] C. Wu, X. Ma, Y. Zhou, Y. Liu. et al.(2018). Klotho restraining Egr1/TLR4/mTOR axis to reducing the expression of fibrosis and inflammatory cytokines in high glucose cultured rat mesangial cells. Experimental and Clinical Endocrinology & Diabetes. DOI: 10.18632/oncotarget.9033.
[9] H. J. Park, J. W. Kim, B. Cho. (2014). Association of FOS-like antigen 1 promoter polymorphism with podocyte foot process effacement in immunoglobulin a nephropathy patients. Journal of Clinical Laboratory Analysis.28(5):391-397. DOI: 10.18632/oncotarget.9033.
[10] L. Zhang, C. Han, F. Ye, Y. He. et al.(2017). Plasma gelsolin induced glomerular fibrosis via the TGF-1/smads signal transduction pathway in IgA nephropathy. International Journal of Molecular Sciences.18(2):390. DOI: 10.18632/oncotarget.9033.
[11] C. Lim, Y. Kim, D. Chae, C. Ahn. et al.(2005). Association of C-509T and T869C polymorphisms of transforming growth factor-b1 gene with susceptibility to and progression of IgA nephropathy. Clinical Nephrology.63(02):61-67. DOI: 10.18632/oncotarget.9033.
[12] G. Yating, S. Meiling, S. Jiazhi. (2017). Meta-analysis of the relevance between Megsin rs1055901, rs1055902 and rs2689399 polymorphism and susceptibility of IgA nephrology in Asian population. Chongqing Medical Journal.46(5):648-653. DOI: 10.18632/oncotarget.9033.
[13] Y. Xia, W. Ping, L. Fujun. (2014). Association of single nucleotide TANK binding kinase-1 gene polymorphism with clinical features and histological phenotypes in IgA nephropathy. Shanghai Medical Journal.37(5):394-397. DOI: 10.18632/oncotarget.9033.
[14] F. Hu, M. Xue, Y. Li. (2018). Early growth response 1 (Egr1) is a transcriptional activator of nox4 in oxidative stress of diabetic kidney disease. Journal of Diabetes Research.2018-10. DOI: 10.18632/oncotarget.9033.
[15] D. W. Huang, B. T. Sherman, Q. Tan, J. R. Collins. et al.(2007). The DAVID gene functional classification tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology.8(9, article R183). DOI: 10.18632/oncotarget.9033.
[16] M. Zhang, X.-M. Li. (2004). Relationship of mitogen-activated protein kinases activation with transdifferentiation of renal tubular epithelial cells in patients with IgA nephropathy. Zhonghua Yi Xue Za Zhi.84(11):898-903. DOI: 10.18632/oncotarget.9033.
[17] L. Ho, J. Sung, Y. Shen, H. Jheng. et al.(2016). Egr-1 deficiency protects from renal inflammation and fibrosis. Journal of Molecular Medicine.94(8):933-942. DOI: 10.18632/oncotarget.9033.
[18] G. Xin, R. Chen, X. Zhang. (2018). Identification of key microRNAs, transcription factors and genes associated with congenital obstructive nephropathy in a mouse model of megabladder. Gene.650:77-85. DOI: 10.18632/oncotarget.9033.
[19] X. Sheng, X. Zuo, X. Liu, Y. Zhou. et al.(2018). Crosstalk between TLR4 and Notch1 signaling in the IgA nephropathy during inflammatory response. International Urology and Nephrology.50(4):779-785. DOI: 10.18632/oncotarget.9033.
[20] H. Jiang, L. Liang, J. Qin, Y. Lu. et al.(2016). Functional networks of aging markers in the glomeruli of IgA nephropathy: a new therapeutic opportunity. Oncotarget.7(23):33616-33626. DOI: 10.18632/oncotarget.9033.
[21] R. J. Wyatt. (2013). Julian BA.IgA nephropathy. The New England Journal of Medicine.368(25):2402-2414. DOI: 10.18632/oncotarget.9033.
[22] R. Eferl, E. F. Wagner. (2003). AP-1: a double-edged sword in tumorigenesis. Nature Reviews Cancer.3(11):859-868. DOI: 10.18632/oncotarget.9033.
[23] E. Hedrick, S. Lee, G. Kim, M. Abdelrahim. et al.(2015). Nuclear receptor 4A1 (NR4A1) as a drug target for renal cell adenocarcinoma. Plos One.10(6). DOI: 10.18632/oncotarget.9033.
[24] L.-S. Li, Z.-H. Liu. (2004). Epidemiologic data of renal diseases from a single unit in China: analysis based on 13,519 renal biopsies. Kidney International.66(3):920-923. DOI: 10.18632/oncotarget.9033.
[25] S. Maere, K. Heymans, M. Kuiper. (2005). BiNGO : a Cytoscape plugin to assess over-representation of gene ontology categories in biological networks. Bioinformatics.21(16):3448-3449. DOI: 10.18632/oncotarget.9033.
[26] H. Jiang, L. Liang, J. Qin, Y. Lu. et al.(2016). Functional networks of aging markers in the glomeruli of IgA nephropathy: a new therapeutic opportunity. Oncotarget.7(23). DOI: 10.18632/oncotarget.9033.
[27] J. McMorrow, E. Murphy. (2011). Inflammation: a role for NR4A orphan nuclear receptors?. Biochemical Society Transactions.39(2):688-693. DOI: 10.18632/oncotarget.9033.
[28] L. Westbrook, A. C. Johnson, K. R. Regner, J. M. Williams. et al.(2014). Genetic susceptibility and loss of Nr4a1 enhances macrophage-mediated renal injury in CKD. Journal of the American Society of Nephrology.25(11):2499-2510. DOI: 10.18632/oncotarget.9033.
[29] X. Su, J. Lv, Y. Liu, J. Wang. et al.(2017). Pregnancy and kidney outcomes in patients with iga nephropathy: a cohort study. American Journal of Kidney Diseases.70(2):262-269. DOI: 10.18632/oncotarget.9033.
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次