首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-18
Analysis of Protein–Protein Functional Associations by Using Gene Ontology and KEGG Pathway
Research Article
Fei Yuan 1 Xiaoyong Pan 2 Lei Chen 3 , 4 Yu-Hang Zhang 5 Tao Huang 5 Yu-Dong Cai 6
Show affiliations
DOI:10.1155/2019/4963289
Received 2019-01-04, accepted for publication 2019-06-26, Published 2019-06-26
PDF
摘要

Protein–protein interaction (PPI) plays an extremely remarkable role in the growth, reproduction, and metabolism of all lives. A thorough investigation of PPI can uncover the mechanism of how proteins express their functions. In this study, we used gene ontology (GO) terms and biological pathways to study an extended version of PPI (protein–protein functional associations) and subsequently identify some essential GO terms and pathways that can indicate the difference between two proteins with and without functional associations. The protein–protein functional associations validated by experiments were retrieved from STRING, a well-known database on collected associations between proteins from multiple sources, and they were termed as positive samples. The negative samples were constructed by randomly pairing two proteins. Each sample was represented by several features based on GO and KEGG pathway information of two proteins. Then, the mutual information was adopted to evaluate the importance of all features and some important ones could be accessed, from which a number of essential GO terms or KEGG pathways were identified. The final analysis of some important GO terms and one KEGG pathway can partly uncover the difference between proteins with and without functional associations.

授权许可

Copyright © 2019 Fei Yuan et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Fei Yuan.Department of Science & Technology, Binzhou Medical University Hospital, Binzhou 256603, Shandong, China, bzmc.edu.cn.snowhawkyrf@outlook.com
2. Yu-Dong Cai.School of Life Sciences, Shanghai University, Shanghai 200444, China, shu.edu.cn.cai_yud@126.com

推荐引用方式

Fei Yuan,Xiaoyong Pan,Lei Chen,Yu-Hang Zhang,Tao Huang,Yu-Dong Cai. Analysis of Protein–Protein Functional Associations by Using Gene Ontology and KEGG Pathway. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. G. V. Heiden, L. C. Cantley, C. B. Thompson. (2009). Understanding the warburg effect: the metabolic requirements of cell proliferation. Science.324(5930):1029-1033. DOI: 10.2174/1389203715666140724090153.
[2] Q. Zhang, X. Sun, K. Feng, S. Wang. et al.(2017). Predicting citrullination sites in protein sequences using mRMR method and random forest algorithm. Comb Chem High Throughput Screen.20(2):164-173. DOI: 10.2174/1389203715666140724090153.
[3] J. Kopitz. (2017). Lipid glycosylation: a primer for histochemists and cell biologists. Histochemistry and Cell Biology.147(2):175-198. DOI: 10.2174/1389203715666140724090153.
[4] L. Chen, Y. Zhang, M. Zheng, T. Huang. et al.(2016). Identification of compound–protein interactions through the analysis of gene ontology, KEGG enrichment for proteins and molecular fragments of compounds. Molecular Genetics and Genomics.291(6):2065-2079. DOI: 10.2174/1389203715666140724090153.
[5] J. Xu, M. Zha, Y. Li, Y. Ding. et al.(2015). The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Reports.34(9):1647-1662. DOI: 10.2174/1389203715666140724090153.
[6] B. W. Matthews. (1975). Comparison of the predicted and observed secondary structure of T4 phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure.405(2):442-451. DOI: 10.2174/1389203715666140724090153.
[7] S. Shukla, U. S. Allam, A. Ahsan, G. Chen. et al.(2014). KRAS protein stability is regulated through SMURF2: UBCH5 complex-mediated -TrCP1 degradation. Neoplasia (United States).16(2):115-128. DOI: 10.2174/1389203715666140724090153.
[8] C. Chakraborty, G. Priya Doss. C, L. Chen, H. Zhu. et al.(2014). Evaluating protein-protein interaction (PPI) networks for diseases pathway, target discovery, and drug-design using 'In silico pharmacology'. Current Protein & Peptide Science.15(6):561-571. DOI: 10.2174/1389203715666140724090153.
[9] H. Cui, L. Chen. (2019). A binary classifier for the prediction of EC numbers of enzymes. Current Proteomics.16(5):381-389. DOI: 10.2174/1389203715666140724090153.
[10] K. Tepper, J. Biernat, S. Kumar, S. Wegmann. et al.(2014). Oligomer formation of tau protein hyperphosphorylated in cells. The Journal of Biological Chemistry.289(49):34389-34407. DOI: 10.2174/1389203715666140724090153.
[11] Y. Zhou, N. Zhang, B.-Q. Li, T. Huang. et al.(2015). A method to distinguish between lysine acetylation and lysine ubiquitination with feature selection and analysis. Journal of Biomolecular Structure and Dynamics.33(11):2479-2490. DOI: 10.2174/1389203715666140724090153.
[12] A. Patil, H. Nakamura. (2005). Filtering high-throughput protein-protein interaction data using a combination of genomic features. BMC Bioinformatics.6:100. DOI: 10.2174/1389203715666140724090153.
[13] L. Chen, Y. Zhang, Q. Zou, C. Chu. et al.(2016). Analysis of the chemical toxicity effects using the enrichment of Gene Ontology terms and KEGG pathways. Biochimica et Biophysica Acta (BBA) - General Subjects.1860(11, Part B):2619-2626. DOI: 10.2174/1389203715666140724090153.
[14] N. Safari-Alighiarloo, M. Taghizadeh, M. Rezaei-Tavirani, B. Goliaei. et al.(2014). Protein-protein interaction networks (PPI) and complex diseases. Gastroenterology and Hepatology from Bed to Bench.7(1):17-31. DOI: 10.2174/1389203715666140724090153.
[15] S. G. Jantzen, B. J. Sutherland, D. R. Minkley, B. F. Koop. et al.(2011). GO trimming: systematically reducing redundancy in large gene ontology datasets. BMC Research Notes.4:267. DOI: 10.2174/1389203715666140724090153.
[16] X. Ma, J. Guo, X. Sun. (2015). Sequence-based prediction of RNA-binding proteins using random forest with minimum redundancy maximum relevance feature selection. BioMed Research International.2015-10. DOI: 10.2174/1389203715666140724090153.
[17] J. Gillis, P. Pavlidis. (2013). Assessing identity, redundancy and confounds in gene ontology annotations over time. Bioinformatics.29(4):476-482. DOI: 10.2174/1389203715666140724090153.
[18] G. L. Dornelles, A. Bueno, J. S. de Oliveira, A. S. da Silva. et al.(2017). Biochemical and oxidative stress markers in the liver and kidneys of rats submitted to different protocols of anabolic steroids. Molecular and Cellular Biochemistry.425(1-2):181-189. DOI: 10.2174/1389203715666140724090153.
[19] The Gene Ontology Consortium. (2015). Gene ontology consortium: going forward. Nucleic Acids Research.43(D1):D1049-D1056. DOI: 10.2174/1389203715666140724090153.
[20] T. J. Rettenmaier, J. D. Sadowsky, N. D. Thomsen, S. C. Chen. et al.(2014). A small-molecule mimic of a peptide docking motif inhibits the protein kinase PDK1. Proceedings of the National Acadamy of Sciences of the United States of America.111(52):18590-18595. DOI: 10.2174/1389203715666140724090153.
[21] C. Ctortecka, V. Palve, B. M. Kuenzi, B. Fang. et al.(2018). Functional proteomics and deep network interrogation reveal a complex mechanism of action of midostaurin in lung cancer cells. Molecular & Cellular Proteomics.17(12):2434-2447. DOI: 10.2174/1389203715666140724090153.
[22] L. Breiman. (2001). Random forests. Machine Learning.45(1):5-32. DOI: 10.2174/1389203715666140724090153.
[23] I. Ben-Sahra, B. D. Manning. (2017). mTORC1 signaling and the metabolic control of cell growth. Current Opinion in Cell Biology.45:72-82. DOI: 10.2174/1389203715666140724090153.
[24] Y. Zhang, C. Ding, T. Li. (2008). Gene selection algorithm by combining reliefF and mRMR. BMC Genomics.9:S27. DOI: 10.2174/1389203715666140724090153.
[25] X. Zhao, L. Chen, Z.-H. Guo, T. Liu. et al.(2019). Predicting drug side effects with compact integration of heterogeneous networks. Current Bioinformatics. DOI: 10.2174/1389203715666140724090153.
[26] H. B. A. Lodish, P. Matsudaira, C. A. Kaiser, M. Krieger. et al.(2004). Molecular Cell Biology. DOI: 10.2174/1389203715666140724090153.
[27] S. Wang, D. Wang, J. Li, T. Huang. et al.(2018). Identification and analysis of the cleavage site in a signal peptide using SMOTE, dagging, and feature selection methods. Molecular Omics.14(1):64-73. DOI: 10.2174/1389203715666140724090153.
[28] S. Wang, Y.-H. Zhang, N. Zhang, L. Chen. et al.(2017). Recognizing and predicting thioether bridges formed by lanthionine and -methyllanthionine in lantibiotics using a random forest approach with feature selection. Combinatorial chemistry & high throughput screening.20(7):582-593. DOI: 10.2174/1389203715666140724090153.
[29] Q. Ni, L. Chen. (2017). A feature and algorithm selection method for improving the prediction of protein structural class. Combinatorial chemistry & high throughput screening.20(7):612-621. DOI: 10.2174/1389203715666140724090153.
[30] S. Hashemifar, B. Neyshabur, A. A. Khan, J. Xu. et al.(2018). Predicting protein–protein interactions through sequence-based deep learning. Bioinformatics.34(17):i802-i810. DOI: 10.2174/1389203715666140724090153.
[31] J. Li, L. Lu, Y.-H. Zhang, M. Liu. et al.(2019). Identification of synthetic lethality based on a functional network by using machine learning algorithms. Journal of Cellular Biochemistry.120(1):405-416. DOI: 10.2174/1389203715666140724090153.
[32] R. P. Huntley, T. Sawford, P. Mutowo-Meullenet, A. Shypitsyna. et al.(2015). The GOA database: gene ontology annotation updates for 2015. Nucleic Acids Research.43(D1):D1057-D1063. DOI: 10.2174/1389203715666140724090153.
[33] X.-Y. Pan, Y.-N. Zhang, H.-B. Shen. (2010). Large-scale prediction of human protein-protein interactions from amino acid sequence based on latent topic features. Journal of Proteome Research.9(10):4992-5001. DOI: 10.2174/1389203715666140724090153.
[34] L. Chen, Y.-H. Zhang, G. Lu, T. Huang. et al.(2017). Analysis of cancer-related lncRNAs using gene ontology and KEGG pathways. Artificial Intelligence in Medicine.76:27-36. DOI: 10.2174/1389203715666140724090153.
[35] Y. Li, M. Collins, J. An, R. Geiser. et al.(2016). Immunoprecipitation and mass spectrometry defines an extensive RBM45 protein–protein interaction network. Brain Research.1647:79-93. DOI: 10.2174/1389203715666140724090153.
[36] M. Santucci, T. Vignudelli, S. Ferrari, M. Mor. et al.(2015). The hippo pathway and YAP/TAZ–TEAD protein–protein interaction as targets for regenerative medicine and cancer treatment. Journal of Medicinal Chemistry.58(12):4857-4873. DOI: 10.2174/1389203715666140724090153.
[37] H. Peng, F. Long, C. Ding. (2005). Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Transactions on Pattern Analysis and Machine Intelligence.27(8):1226-1238. DOI: 10.2174/1389203715666140724090153.
[38] N. Kory, R. V. Farese, T. C. Walther. (2016). Targeting fat: mechanisms of protein localization to lipid droplets. Trends in Cell Biology.26(7):535-546. DOI: 10.2174/1389203715666140724090153.
[39] P. D. McCrea, C. J. Gottardi. (2016). Beyond -catenin: prospects for a larger catenin network in the nucleus. Nature Reviews Molecular Cell Biology.17(1):55-64. DOI: 10.2174/1389203715666140724090153.
[40] R. Jansen, H. Yu, D. Greenbaum, Y. Kluger. et al.(2003). A Bayesian networks approach for predicting protein-protein interactions from genomic data. Science.302(5644):449-453. DOI: 10.2174/1389203715666140724090153.
[41] L. Chen, Y.-H. Zhang, X. Pan, M. Liu. et al.(2018). Tissue expression difference between mRNAs and lncRNAs. International Journal of Molecular Sciences.19(11):3416. DOI: 10.2174/1389203715666140724090153.
[42] A. Franceschini, D. Szklarczyk, S. Frankild, M. Kuhn. et al.(2013). STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research.41(1):D808-D815. DOI: 10.2174/1389203715666140724090153.
[43] P. Abeyrathna, Y. Su. (2015). The critical role of Akt in cardiovascular function. Vascular Pharmacology.74:38-48. DOI: 10.2174/1389203715666140724090153.
[44] L. Fu, B. Niu, Z. Zhu, S. Wu. et al.(2012). CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics.28(23):3150-3152. DOI: 10.2174/1389203715666140724090153.
[45] J. Shen, J. Zhang, X. Luo. (2007). Predicting protein-protein interactions based only on sequences information. Proceedings of the National Acadamy of Sciences of the United States of America.104(11):4337-4341. DOI: 10.2174/1389203715666140724090153.
[46] X. Zhao, L. Chen, J. Lu. (2018). A similarity-based method for prediction of drug side effects with heterogeneous information. Mathematical Biosciences.306:136-144. DOI: 10.2174/1389203715666140724090153.
[47] B. Q. Li, L.-L. Zheng, K.-Y. Feng, L.-L. Hu. et al.(2016). Prediction of linear B-ceel epitopes with mRMR feature selection and analysis. Current Bioinformatics.11(1):22-31. DOI: 10.2174/1389203715666140724090153.
[48] M. Tagaya, K. Arasaki. (2017). Regulation of mitochondrial dynamics and autophagy by the mitochondria-associated membrane. Advances in Experimental Medicine and Biology.997:33-47. DOI: 10.2174/1389203715666140724090153.
[49] L. Chen, S. Wang, Y.-H. Zhang, L. Wei. et al.(2018). Prediction of nitrated tyrosine residues in protein sequences by extreme learning machine and feature selection methods. Combinatorial Chemistry & High Throughput Screening.21(6):393-402. DOI: 10.2174/1389203715666140724090153.
[50] M. Kanehisa, S. Goto. (2000). KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Research.28(1):27-30. DOI: 10.2174/1389203715666140724090153.
[51] L. Chen, X. Pan, X. Hu, Y.-H. Zhang. et al.(2018). Gene expression differences among different MSI statuses in colorectal cancer. International Journal of Cancer.143(7):1731-1740. DOI: 10.2174/1389203715666140724090153.
[52] B. Neyshabur, A. Khadem, S. Hashemifar, S. S. Arab. et al.(2013). NETAL: a new graph-based method for global alignment of protein-protein interaction networks. Bioinformatics.29(13):1654-1662. DOI: 10.2174/1389203715666140724090153.
[53] T. Simmen, M. Tagaya. (2017). Organelle communication at membrane contact sites (MCS): from curiosity to center stage in cell biology and biomedical research. Advances in Experimental Medicine and Biology.997:1-12. DOI: 10.2174/1389203715666140724090153.
[54] L. Chen, C. Chu, Y.-H. Zhang, M. Zheng. et al.(2017). Identification of drug-drug interactions using chemical interactions. Current Bioinformatics.12(6):526-534. DOI: 10.2174/1389203715666140724090153.
[55] M. Urulangodi, M. Sebesta, D. Menolfi, B. Szakal. et al.(2015). Local regulation of the Srs2 helicase by the SUMO-like domain protein Esc2 promotes recombination at sites of stalled replication. Genes & Development.29(19):2067-2080. DOI: 10.2174/1389203715666140724090153.
[56] X. E. Feng, Q. J. Wang, J. Gao, S. R. Ban. et al.(2017). Synthesis of novel nitrogen-containing heterocycle bromophenols and their interaction with Keap1 protein by molecular docking. Molecules.22(12):2142. DOI: 10.2174/1389203715666140724090153.
[57] P. Chen, D. Xuan, J. Zhang. (2018). Periodontitis aggravates kidney damage in obese mice by MMP2 regulation. Bratislava Medical Journal.118(12):740-745. DOI: 10.2174/1389203715666140724090153.
[58] S. Aranda, D. Rutishauser, P. Ernfors. (2014). Identification of a large protein network involved in epigenetic transmission in replicating DNA of embryonic stem cells. Nucleic Acids Research.42(11):6972-6986. DOI: 10.2174/1389203715666140724090153.
[59] F. Li, C. Li, M. Wang, G. I. Webb. et al.(2015). GlycoMine: a machine learning-based approach for predicting N-, C- and O-linked glycosylation in the human proteome. Bioinformatics.31(9):1411-1419. DOI: 10.2174/1389203715666140724090153.
[60] S. Niu, L.-L. Hu, L.-L. Zheng. (2012). Predicting protein oxidation sites with feature selection and analysis approach. Journal of Biomolecular Structure and Dynamics.29(6):650-658. DOI: 10.2174/1389203715666140724090153.
[61] I. M. Rosenberg. (2005). Protein Analysis and Purification: Benchtop Techniques. DOI: 10.2174/1389203715666140724090153.
[62] M. Radovic, M. Ghalwash, N. Filipovic, Z. Obradovic. et al.(2017). Minimum redundancy maximum relevance feature selection approach for temporal gene expression data. BMC Bioinformatics.18(1):9. DOI: 10.2174/1389203715666140724090153.
[63] J. Snider, S. Kittanakom, J. Curak, I. Stagljar. et al.(2010). Split-ubiquitin based membrane yeast two-hybrid (MYTH) system: a powerful tool for identifying protein-protein interactions. Journal of Visualized Experiments(36). DOI: 10.2174/1389203715666140724090153.
[64] A. Ben-Hur, W. S. Noble. (2005). Kernel methods for predicting protein-protein interactions. Bioinformatics.21:i38-i46. DOI: 10.2174/1389203715666140724090153.
[65] S. R. Maetschke, M. Simonsen, M. J. Davis, M. A. Ragan. et al.(2012). Gene ontology-driven inference of protein-protein interactions using inducers. Bioinformatics.28(1):69-75. DOI: 10.2174/1389203715666140724090153.
[66] L. Chen, S. Wang, Y. Zhang, J. Li. et al.(2017). Identify key sequence features to improve CRISPR sgRNA efficacy. IEEE Access.5:26582-26590. DOI: 10.2174/1389203715666140724090153.
[67] S. Bruckner, F. Hüffner, R. M. Karp, R. Shamir. et al.(2010). Topology-free querying of protein interaction networks. Journal of Computational Biology.17(3):237-252. DOI: 10.2174/1389203715666140724090153.
[68] L. Chen, B.-Q. Li, M.-Y. Zheng, J. Zhang. et al.(2013). Prediction of effective drug combinations by chemical interaction, protein interaction and target enrichment of KEGG pathways. BioMed Research International.2013-10. DOI: 10.2174/1389203715666140724090153.
[69] C. Von Mering, L. J. Jensen, B. Snel, S. D. Hooper. et al.(2005). STRING: known and predicted protein-protein associations, integrated and transferred across organisms. Nucleic Acids Research.33:D433-D437. DOI: 10.2174/1389203715666140724090153.
[70] L. Liu, L. Chen, Y.-H. Zhang, L. Wei. et al.(2017). Analysis and prediction of drug-drug interaction by minimum redundancy maximum relevance and incremental feature selection. Journal of Biomolecular Structure and Dynamics.35(2):312-329. DOI: 10.2174/1389203715666140724090153.
[71] B. Zakeri, J. O. Fierer, E. Celik, E. C. Chittock. et al.(2012). Peptide tag forming a rapid covalent bond to a protein, through engineering a bacterial adhesin. Proceedings of the National Acadamy of Sciences of the United States of America.109(12):E690-E697. DOI: 10.2174/1389203715666140724090153.
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次