首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-14
Integration of Gene Expression Profile Data to Verify Hub Genes of Patients with Stanford A Aortic Dissection
Research Article
Weitie Wang 1 Tiance Wang 1 Yong Wang 1 Hulin Piao 1 Bo Li 1 Zhicheng Zhu 1 Rihao Xu 1 Dan Li 1 Kexiang Liu 1
Show affiliations
DOI:10.1155/2019/3629751
Received 2019-04-21, accepted for publication 2019-06-20, Published 2019-06-20
PDF
摘要

Thoracic aortic dissection (TAD) is a catastrophic disease worldwide, but the pathogenic genes and pathways are largely unclear. This study aims at integrating two gene expression profile datasets and verifying hub genes and pathways involved in TAD as well as exploring potential molecular mechanisms. We will combine our mRNAs expression profile (6 TAD tissues versus 6 non-TAD tissues) and GSE52093 downloaded from the Gene Expression Omnibus (GEO) database. The two mRNAs expression profiles contained 13 TAD aortic tissues and 11 non-TAD tissues. The two expression profile datasets were integrated and we found out coexpression of differentially expressed genes (DEGs) using bioinformatics methods. The gene ontology and pathway enrichment of DEGs were performed by DAVID and Kyoto Encyclopedia of Genes and Genomes online analyses, respectively. The protein-protein interaction networks of the DEGs were constructed according to the data from the STRING database. Cytohubber calculating result shows the top 10 hub genes with CDC20, AURKA, RFC4, MCM4, TYMS, MCM2, DLGAP5, FANCI, BIRC5, and POLE2. Module analysis revealed that TAD was associated with significant pathways including cell cycle, vascular smooth muscle contraction, and adrenergic signaling in cardiomyocytes. The qRT-PCR result showed that the expression levels of all the hub genes were significantly increased in OA samples (p < 0.05), and these candidate genes could be used as potential diagnostic biomarkers and therapeutic targets of TAD.

授权许可

Copyright © 2019 Weitie Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Kexiang Liu.Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Ziqiang Street 218, Changchun, Jilin 130041, China, jlu.edu.cn.lkx@jlu.edu.cn

推荐引用方式

Weitie Wang,Tiance Wang,Yong Wang,Hulin Piao,Bo Li,Zhicheng Zhu,Rihao Xu,Dan Li,Kexiang Liu. Integration of Gene Expression Profile Data to Verify Hub Genes of Patients with Stanford A Aortic Dissection. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] L. Wang, J. Zhang, L. Wan, X. Zhou. et al.(2015). Targeting Cdc20 as a novel cancer therapeutic strategy. Pharmacology & Therapeutics.151:141-151. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[2] D. W. Huang, B. T. Sherman, Q. Tan, J. R. Collins. et al.(2007). Te DAVID gene functional classifcation tool: a novel biological module-centric algorithm to functionally analyze large gene lists. Genome Biology.8(9, article R183). DOI: 10.1161/CIRCULATIONAHA.114.010890.
[3] X. Wei, Y. Sun, Y. Wu, J. Zhu. et al.(2017). Downregulation of Talin-1 expression associates with increased proliferation and migration of vascular smooth muscle cells in aortic dissection. BMC Cardiovascular Disorders.17(1). DOI: 10.1161/CIRCULATIONAHA.114.010890.
[4] F. Luo, X. L. Zhou, J. J. Li, R. T. Hui. et al.(2009). Inflammatory response is associated with aortic dissection. Ageing research reviews 8:31-35. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[5] M. E. Ritchie, B. Phipson, D. Wu, Y. Hu. et al.(2015). powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[6] L. Gautier, L. Cope, B. M. Bolstad, R. A. Irizarry. et al.(2004). Affy—analysis of Affymetrix GeneChip data at the probe level. Bioinformatics.20(3):307-315. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[7] G. Jia, A. K. Mitra, D. M. Gangahar, D. K. Agrawal. et al.(2009). Regulation of cell cycle entry by PTEN in smooth muscle cell proliferation of human coronary artery bypass conduits. Journal of Cellular and Molecular Medicine.13(3):547-554. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[8] C. Michaelis, R. Ciosk, K. Nasmyth. (1997). Cohesins: chromosomal proteins that prevent premature separation of sister chromatids. Cell.91(1):35-45. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[9] T.-C. Hsieh, X. Lu, J. Guo, J. M. Wu. et al.(2010). Differential regulation of proliferation, cell cycle control and gene expression in cultured human aortic and pulmonary artery endothelial cells by resveratrol. International Journal of Molecular Medicine.26(5):743-749. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[10] H. Lim, N. V. Dimova, M. M. Tan, F. D. Sigoillot. et al.(2013). The G2/M Regulator Histone Demethylase PHF8 Is Targeted for Degradation by the Anaphase-Promoting Complex Containing CDC20. Molecular and Cellular Biology.33(21):4166-4180. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[11] LH. Hartwell, J. Culotti, B. Reid. (1970). Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proceedings of the National Academy of Sciences of the United States of America:66-352. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[12] D. Sidloff, E. Choke, P. Stather, M. Bown. et al.(2014). Mortality From Thoracic Aortic Diseases and Associations With Cardiovascular Risk Factors. Circulation.130(25):2287-2294. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[13] T. Barrett, S. E. Wilhite, P. Ledoux, C. Evangelista. et al.(2013). NCBI GEO: archive for functional genomics data sets—update. Nucleic Acids Research.41(1):D991-D995. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[14] D. Szklarczyk, A. Franceschini, M. Kuhn, M. Simonovic. et al.(2011). Te STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Research.39(1):D561-D568. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[15] Y. Li, N. Yang, X. Zhou, X. Bian. et al.(2018). LncRNA and mRNA interaction study based on transcriptome profiles reveals potential core genes in the pathogenesis of human thoracic aortic dissection. Molecular Medicine Reports. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[16] T. Liu, J. Xu, J. L. Guo, C. Y. Lin. et al.(2017). YAP1 up-regulation inhibits apoptosis of aortic dissection vascular smooth muscle cells. European Review for Medical and Pharmacological Sciences.21:4632-4639. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[17] N. Kimura. (2017). Geneexpression profiling of acute type Aaortic dissectioncombined with in vitro assessment. European Journal of Cardio-Thoracic Surgery.52:810-817. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[18] C. A. Nienaber. (2016). Aortic dissection. Nature Reviews. Disease Primers 2.2:16053. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[19] P. Shannon, A. Markiel, O. Ozier, N. S. Baliga. et al.(2003). Cytoscape: a software Environment for integrated models of biomolecular interaction networks. Genome Research.13(11):2498-2504. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[20] C. A. Nienaber. (2016). Aortic dissection. Nature reviews. Disease primers 2:16053. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[21] G. D. Bader, C. W. V. Hogue. (2003). An automated method for finding molecular complexes in large protein interaction networks.. BMC Bioinformatics.4(1, article 2). DOI: 10.1161/CIRCULATIONAHA.114.010890.
[22] R. E. Clough, C. A. Nienaber. (2015). Management of acute aortic syndrome. Nature Reviews Cardiology.12(2):103-114. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[23] Y. Iida, H. Tanaka, H. Sano, Y. Suzuki. et al.(2018). Ectopic Expression of PCSK9 by Smooth Muscle Cells Contributes to Aortic Dissection. Annals of Vascular Surgery.48:195-203. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[24] M. V. Hadjihannas, D. B. Bernkopf, M. Brückner, J. Behrens. et al.(2012). Cell cycle control of Wnt/-catenin signalling by conductin/axin2 through CDC20. EMBO Reports.13(4):347-354. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[25] Z. Li, Q. Wang, G. Chen, X. Li. et al.(2018). Integration of gene expression profile data to screen and verify hub genes involved in osteoarthritis. BioMed Research International.2018-10. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[26] W. Liao, M. Tan, Y. Yuan, G. Wang. et al.(2015). Brahma-related gene 1 inhibits proliferation and migration of human aortic smooth muscle cells by directly up-regulating Ras-related associated with diabetes in the pathophysiologic processes of aortic dissection. The Journal of Thoracic and Cardiovascular Surgery.150(5):1292-1301.e2. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[27] S. Zou, M. Liao, J. Yang, T. Huang. et al.(2017). Heat shock protein 27 plays a protective role in thoracic aortic dissection by promoting cell proliferation and inhibiting apoptosis. Cellular & Molecular Biology Letters.22(1). DOI: 10.1161/CIRCULATIONAHA.114.010890.
[28] G. G. Sedgwick, D. G. Hayward, B. di Fiore, M. Pardo. et al.(2013). Mechanisms controlling the temporal degradation of Nek2A and Kif18A by the APC/C-Cdc20 complex. EMBO Journal.32(2):303-314. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[29] D. Spira, G. Grözinger, N. Domschke, R. Bantleon. et al.(2015). Cell cycle regulation of smooth muscle cells--searching for inhibitors of neointima formation: is combretastatin a4 an alternative to sirolimus and paclitaxel?. Journal of Vascular and Interventional Radiology.26(9):1388-1395. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[30] V. Amador, S. Ge, P. G. Santamaría, D. Guardavaccaro. et al.(2007). APC/CCdc20 Controls the Ubiquitin-Mediated Degradation of p21 in Prometaphase. Molecular Cell.27(3):462-473. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[31] J. L. Fry, Y. Shiraishi, R. Turcotte, X. Yu. et al.(2015). Vascular Smooth Muscle Sirtuin‐1 Protects Against Aortic Dissection During Angiotensin II–Induced Hypertension. Journal of the American Heart Association.4(9). DOI: 10.1161/CIRCULATIONAHA.114.010890.
[32] L. Zhang, C. Yu, Q. Chang, X. Luo. et al.(2016). Liu S.Comparison ofgeneexpressionprofilesinaortic dissectionand normal humanaortictissues. Biomedical Reports.5(4):421-427. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[33] J. Cheng, X. Zhou, X. Jiang, T. Sun. et al.(2018). Deletion of ACTA2 in mice promotes angiotensin II induced pathogenesis of thoracic aortic aneurysms and dissections. Journal of Thoracic Disease.10(8):4733-4740. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[34] Z. An, F. Qiao, Q. Lu, Y. Ma. et al.(2017). Interleukin-6 downregulated vascular smooth muscle cell contractile proteins via ATG4B-mediated autophagy in thoracic aortic dissection. Heart and Vessels.32(12):1523-1535. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[35] P. G. Hagan. The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. .283:897-903. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[36] Z. Zhao. (2019). HSP90 inhibitor 17-DMAG effectively alleviated the progress ofthoracicaortic dissectionby suppressingsmoothmusclecellphenotypic switch. American Journal of Translational Research.11:509-518. DOI: 10.1161/CIRCULATIONAHA.114.010890.
[37] R. Erbel. (2014). ESC Guidelines on the diagnosis and treatment of aortic diseases: Document covering acute and chronic aortic diseases of the thoracic and abdominal aorta of the adult. The Task Force for the Diagnosis and Treatment of Aortic Diseases of the European Society of Cardiology (ESC. European heart journal.35:2873-2926. DOI: 10.1161/CIRCULATIONAHA.114.010890.
文献评价指标
浏览 5次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次