首页 » 文章 » 文章详细信息
Active and Passive Electronic Components Volume 2019 ,2019-07-14
Improving Linearity and Robustness of RF LDMOS by Mitigating Quasi-Saturation Effect
Research Article
Haifeng Mo 1 , 2 Yaohui Zhang 1 Helun Song 1
Show affiliations
DOI:10.1155/2019/8425198
Received 2019-02-21, accepted for publication 2019-06-26, Published 2019-06-26
PDF
摘要

This paper discusses linearity and robustness together for the first time, disclosing a way to improve them. It reveals that the nonlinear transconductance with device working at quasi-saturation region is significant factor of device linearity. The peak electric field is the root cause of electron velocity saturation. The high electric field at the drift region near the drain will cause more electron-hole pairs generated to trigger the parasitic NPN transistor turn-on, which may cause failure of device. Devices with different drift region doping are simulated with TCAD and measured. With LDD4 doping, the peak electric field in the drift region is reduced; the linear region of the transconductance is broadened. The adjacent channel power ratio is decreased by 2 dBc; 12% more power can be discharged before the NPN transistor turn-on, indicating a better linearity and robustness.

授权许可

Copyright © 2019 Haifeng Mo et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Haifeng Mo.Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, China, cas.cn;University of Chinese Academy of Sciences, China, ucas.ac.cn.hfmo2015@sinano.ac.cn

推荐引用方式

Haifeng Mo,Yaohui Zhang,Helun Song. Improving Linearity and Robustness of RF LDMOS by Mitigating Quasi-Saturation Effect. Active and Passive Electronic Components ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Shrivastava, H. Gossner. (2012). A review on the esd robustness of drain-extended mos devices. IEEE Transactions on Device and Materials Reliability.12(4):615-625. DOI: 10.1016/j.sse.2008.03.001.
[2] M. Shrivastava, H. Gossner, C. Russ. (2012). A drain-extended MOS device with spreading filament under ESD stress. IEEE Electron Device Letters.33(9):1294-1296. DOI: 10.1016/j.sse.2008.03.001.
[3] S. J. C. H. Theeuwen, J. H. Qureshi. (2012). LDMOS technology for RF power amplifiers. IEEE Transactions on Microwave Theory and Techniques.60(6):1755-1763. DOI: 10.1016/j.sse.2008.03.001.
[4] D. C. Burdeaux, W. R. Burger. Intrinsic reliability of RF power LDMOS FETs. :5A.2.1-5A.2.9. DOI: 10.1016/j.sse.2008.03.001.
[5] A. J. Walker, H. Puchner, S. P. Dhanraj. (2009). High-voltage CMOS ESD and the safe operating area. IEEE Transactions on Electron Devices.56(8):1753-1760. DOI: 10.1016/j.sse.2008.03.001.
[6] C.-Y. Chen, O. Tornblad, R. W. Dutton. (2009). Linearity analysis of lateral channel doping in RF power MOSFETs. IEEE Transactions on Microwave Theory and Techniques.57(12):3389-3394. DOI: 10.1016/j.sse.2008.03.001.
[7] O. Tornblad, C. Ito, F. Rotella, M. Gordon. et al.Linearity analysis of RF LDMOS devices utilizing harmonic balance device simulation. :243-246. DOI: 10.1016/j.sse.2008.03.001.
[8] O. Bengtsson, L. Vestling, J. Olsson. (2008). Investigation of the non-linear input capacitance in LDMOS transistors and its contribution to IMD and phase distortion. Solid-State Electronics.52(7):1024-1031. DOI: 10.1016/j.sse.2008.03.001.
[9] A. Gupta, M. Shrivastava, M. S. Baghini, D. K. Sharma. et al.(2016). On the improved high-frequency linearity of drain extended mos devices. IEEE Microwave and Wireless Components Letters.26(12):999-1001. DOI: 10.1016/j.sse.2008.03.001.
[10] V. Parthasarathy, V. Khemka, R. Zhu, J. Whitfield. et al.(2002). A double RESURF LDMOS with drain profile engineering for improved ESD robustness. IEEE Electron Device Letters.23(4):212-214. DOI: 10.1016/j.sse.2008.03.001.
[11] B. S. Kumar, M. Shrivastava. (2018). Part I: on the unification of physics of quasi-saturation in LDMOS devices. IEEE Transactions on Electron Devices.65(1):191-198. DOI: 10.1016/j.sse.2008.03.001.
[12] Y. Hu, H. Wang, C. Du, M. Ma. et al.(2016). A high-voltage (>600 V) N-island LDMOS with step-doped drift region in partial SOI technology. IEEE Transactions on Electron Devices.63(5):1969-1976. DOI: 10.1016/j.sse.2008.03.001.
[13] K. Bathich, H. Portela, G. Boeck. A high efficiency Si LDMOS Doherty power amplifier with optimized linearity. :33-36. DOI: 10.1016/j.sse.2008.03.001.
[14] M. van der Heijden, H. de Graaff, L. de Vreede, J. Gajadharsing. et al.Ultra-linear distributed class-AB LDMOS RF power amplifier for base stations. .2:1363-1366. DOI: 10.1016/j.sse.2008.03.001.
文献评价指标
浏览 12次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次