首页 » 文章 » 文章详细信息
Advances in Materials Science and Engineering Volume 2019 ,2019-07-17
Transformation of M/A Constituents during Tempering and Its Effects on Impact Toughness of Weld Metals for X80 Hot Bends
Research Article
Gui-ying Qiao 1 , 2 , 3 Xiu-lin Han 4 Xiao-wei Chen 4 Xu Wang 4 Bo Liao 2 , 3 Fu-ren Xiao 2 , 3
Show affiliations
DOI:10.1155/2019/6429045
Received 2019-03-29, accepted for publication 2019-07-07, Published 2019-07-07
PDF
摘要

Impact toughness of the weld metal is one of the important factors affecting the quality of hot bends, which is strongly dependent on the microstructure transformation during hot bending and tempering. In this study, three kinds of weld metals with different Ni contents were selected, and then the effects of tempering temperature on the microstructure impact toughness of weld metals for hot bends were investigated by simulation conducted on a Gleeble-3500 thermal simulator. The results show that the nonmetallic inclusion particles in weld metals can become the nuclear core of acicular ferrite like in as-welded metal. So, the overlapping acicular ferrite microstructure is obtained in the weld metal after direct cooling from the reheating temperature. During tempering, the overlapping acicular ferrite microstructure is degenerated, and martensite/austenite (M/A) constituents in the acicular ferrite microstructure decompose into ferrites and carbides. The resulting carbide particles mainly distribute along the acicular ferrite grain boundaries. With the increase of the tempering temperature, the carbide particles coarsen, which decreases the impact toughness of the weld metal of hot bends. Addition of Ni to weld metals can refine the acicular ferrite and improve the impact toughness.

授权许可

Copyright © 2019 Gui-ying Qiao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Fu-ren Xiao.Key Laboratory of Metastable Materials Science & Technology, College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004, China, ysu.edu.cn;Hebei Key Lab for Optimizing Metal Product Technology and Performance, College of Materials Science & Engineering, Yanshan University, Qinhuangdao 066004, China, ysu.edu.cn.frxiao@ysu.edu.cn

推荐引用方式

Gui-ying Qiao,Xiu-lin Han,Xiao-wei Chen,Xu Wang,Bo Liao,Fu-ren Xiao. Transformation of M/A Constituents during Tempering and Its Effects on Impact Toughness of Weld Metals for X80 Hot Bends. Advances in Materials Science and Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. E. Peddle, C. A. Pickles. (2001). Carbide development in the heat affected zone of tempered and post-weld heat treated 2.25Cr-1Mo steel weldments. Canadian Metallurgical Quarterly.40(1):105-125. DOI: 10.1155/2017/7409873.
[2] S. Suzuki, T. Kamo, Y. Komizo. (2009). Influence of martensitic islands on fracture behaviour of high heat input weld HAZ. Welding International.23(6):397-402. DOI: 10.1155/2017/7409873.
[3] L. C. S. de Araújo, L. C. Cândido, V. B. Trindade, R. R. Porcaro. et al.(2017). Evaluation of the influence of post welding heat treatments on microstructure and mechanical properties of API 5L X70Q weld joints. Welding International.31(4):251-258. DOI: 10.1155/2017/7409873.
[4] G. Z. Batista, L. Naschpitz, E. Hippert, I. D. S. Bott. et al.Induction hot bending and heat treatment of 20” API 5L X80 pipe. .3:89-98. DOI: 10.1155/2017/7409873.
[5] W. W. Zhang, H. Li, Q. Chi. (2016). Technical specifications for X80 OD 1422 mm line pipes and corresponding products. Natural Gas Industry B.3(5):485-492. DOI: 10.1155/2017/7409873.
[6] M.-C. Zhao, T. Hanamura, H. Qiu, K. Nagai. et al.(2005). Difference in the role of non-quench aging on mechanical properties between acicular ferrite and ferrite-pearlite pipeline steels. ISIJ International.45(1):116-120. DOI: 10.1155/2017/7409873.
[7] X. Wang, B. Liao, D.-Y. Wu, X.-L. Han. et al.(2014). Effects of hot bending parameters on microstructure and mechanical properties of weld metal for X80 hot bends. Journal of Iron and Steel Research International.21(12):1129-1135. DOI: 10.1155/2017/7409873.
[8] R. A. Silva, G. Z. Batista, L. F. G. De Souza, I. S. Bott. et al.(2012). Effect of varying high frequency induction bending on the longitudinal SAW weld of API X80 steel pipe. Materials Science Forum.706–709:2059-2065. DOI: 10.1155/2017/7409873.
[9] A. S. Oryshchenko, A. V. Pimenov, S. I. Shekin, M. G. Sharapov. et al.(2013). The effect of non-metallic inclusions on the toughness of the weld metal of cold-resistant steels at low temperatures. Welding International.27(9):681-686. DOI: 10.1155/2017/7409873.
[10] Y. M. Kim, H. Lee, N. J. Kim. (2008). Transformation behavior and microstructural characteristics of acicular ferrite in linepipe steels. Materials Science and Engineering A.478(1-2):361-370. DOI: 10.1155/2017/7409873.
[11] J. Zachrisson, J. Börjesson, L. Karlsson. (2013). Role of inclusions in formation of high strength steel weld metal microstructures. Science and Technology of Welding and Joining.18(7):603-609. DOI: 10.1155/2017/7409873.
[12] A. N. Makovetskii, D. A. Mirzaev. (2010). Effect of a heat treatment on the cold resistance of steels for oil pipelines. The Physics of Metals and Metallography.110(4):398-404. DOI: 10.1155/2017/7409873.
[13] X. Wang, F.-R. Xiao, Y.-H. Fu, X.-W. Chen. et al.(2011). Material development for grade X80 heavy-wall hot induction bends. Materials Science and Engineering: A.530:539-547. DOI: 10.1155/2017/7409873.
[14] Y. M. Kim, H. Lee, N. J. Kim, J. Y. Yoo. et al.Microstructural characteristics of acicular ferrite in linepipe steels. :19-24. DOI: 10.1155/2017/7409873.
[15] J. M. Gregg, H. K. D. H. Bhadeshia. (1997). Solid-state nucleation of acicular ferrite on minerals added to molten steel. Acta Materialia.45(2):739-748. DOI: 10.1155/2017/7409873.
[16] B. Y. Kang, H. J. Kim, S. K. Hwang. (2000). Effect of Mn and Ni on the variation of the microstructure and mechanical properties of low-carbon weld metals. ISIJ International.40(12):1237-1245. DOI: 10.1155/2017/7409873.
[17] G. Y. Qiao, X. W. Chen, Z. E. Zhang. (2017). Mechanical properties of high-Nb X80 steel weld pipes for the second west-to-east gas transmission pipeline project. Advances in Materials Science and Engineering.2017-13. DOI: 10.1155/2017/7409873.
[18] R. R. Osmanli, M. Hakem. (2005). Effects of welding and the PWHT on the mechanical properties of API 5L GrX70 steel. Welding in the World.49(9):535-539. DOI: 10.1155/2017/7409873.
[19] T. Pan, Z.-G. Yang, C. Zhang, B.-Z. Bai. et al.(2006). Kinetics and mechanisms of intragranular ferrite nucleation on non-metallic inclusions in low carbon steels. Materials Science and Engineering: A.438–440:1128-1132. DOI: 10.1155/2017/7409873.
[20] A. Mannucci, E. Anelli, F. Zana. Bends for critical line pipe projects: advantages of the off-line full quenching and tempering. .6:175-185. DOI: 10.1155/2017/7409873.
[21] M. Divya, C. R. Das, V. Ramasubbu, S. K. Albert. et al.(2011). Improving 410NiMo weld metal toughness by PWHT. Journal of Materials Processing Technology.211(12):2032-2038. DOI: 10.1155/2017/7409873.
[22] S. Slater, R. Wilkinson. Investigation into the effect of post weld heat treatment on thermo-mechanically controlled rolled pipeline steels. .3:679-689. DOI: 10.1155/2017/7409873.
[23] X. L. Zhang, J. X. Liu. (2012). The study on the orderliness of change of microstructure and mechanical properties in simulating the heating process of bending of X80 pipeline steels. Advanced Materials Research.476–478:174-178. DOI: 10.1155/2017/7409873.
[24] D. Ren, F. R. Xiao, P. Tian, X. Wang. et al.(2009). Effects of welding wire composition and welding process on the weld metal toughness of submerged arc welded pipeline steel. International Journal of Minerals, Metallurgy and Materials.16(1):65-70. DOI: 10.1155/2017/7409873.
文献评价指标
浏览 15次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次