首页 » 文章 » 文章详细信息
Applied Bionics and Biomechanics Volume 2019 ,2019-07-17
Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S′PS′ Mechanism
Research Article
Caidong Wang 1 Liangwen Wang 1 Tuanhui Wang 1 Hongpeng Li 2 Wenliao Du 1 Fannian Meng 1 Weiwei Zhang 1
Show affiliations
DOI:10.1155/2019/7071064
Received 2019-01-24, accepted for publication 2019-02-27, Published 2019-02-27
PDF
摘要

An ankle joint auxiliary rehabilitation robot has been developed, which consists of an upper platform, a lower platform, a dorsiflexion/plantar flexion drive system, a varus/valgus drive system, and some connecting parts. The upper platform connects to the lower platform through a ball pin pair and two driving branch chains based on the S′PS′ mechanism. Although the robot has two degrees of freedom (DOF), the upper platform can realize three kinds of motion. To achieve ankle joint auxiliary rehabilitation, the ankle joint of patients on the upper platform makes a bionic motion. The robot uses a centre ball pin pair as the main support to simulate the motion of the ankle joint; the upper platform and the centre ball pin pair construct a mirror image of a patient’s foot and ankle joint, which satisfies the human body physiological characteristics; the driving systems adopt a rigid-flexible hybrid structure; and the dorsiflexion/plantar flexion motion and the varus/valgus motion are decoupled. These structural features can avoid secondary damage to the patient. The rehabilitation process is considered, and energy consumption of the robot is studied. An experimental prototype demonstrates that the robot can simulate the motion of the human foot.

授权许可

Copyright © 2019 Caidong Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Liangwen Wang.School of Mechanical and Electrical Engineering, Zhengzhou University of Light Industry, Henan Provincial Key Laboratory of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou 450002, China, zzuli.edu.cn.w_liangwen@sina.com

推荐引用方式

Caidong Wang,Liangwen Wang,Tuanhui Wang,Hongpeng Li,Wenliao Du,Fannian Meng,Weiwei Zhang. Research on an Ankle Joint Auxiliary Rehabilitation Robot with a Rigid-Flexible Hybrid Drive Based on a 2-S′PS′ Mechanism. Applied Bionics and Biomechanics ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] W. Meng, S. Q. Xie, Q. Liu, C. Z. Lu. et al.(2017). Robust iterative feedback tuning control of a compliant rehabilitation robot for repetitive ankle training. IEEE/ASME Transactions on Mechatronics.22(1):173-184. DOI: 10.1109/icit.2006.372374.
[2] G. R. Yu, Y. F. Yang, K. Zhang, J. Mei. et al.(2005). Experimental study of subtalar and ankle joint in hind foot motion. Chinese Journal of Orthopaedics.25(4):236-239. DOI: 10.1109/icit.2006.372374.
[3] W. M. A. Rosado, L. G. V. Valdes, A. B. Ortega, J. R. Ascencio. et al.(2017). Passive rehabilitation exercises with an ankle rehabilitation prototype based in a robot parallel structure. IEEE Latin America Transactions.15(1):48-56. DOI: 10.1109/icit.2006.372374.
[4] Y. Ding, M. Sivak, B. Weinberg, C. Mavroidis. et al.NUVABAT: Northeastern University virtual ankle and balance trainer. :509-514. DOI: 10.1109/icit.2006.372374.
[5] I. Veneva. (2010). Design and implementation of device for control of active ankle–foot orthosis. Journal of Theoretical and Applied Mechanics.40(4):81-92. DOI: 10.1109/icit.2006.372374.
[6] Y.-P. Hou, X.-F. Ceng, Q. Xu. (2013). The mechanism research for ankle rehabilitation. Journal of Hebei United University (Natural Science Edition).35(2):55-58. DOI: 10.1109/icit.2006.372374.
[7] G. Liu, J. Gao, H. Yue, X. Zhang. et al.Design and kinematics analysis of parallel robots for ankle rehabilitation. :253-258. DOI: 10.1109/icit.2006.372374.
[8] National Health and Family Planning Commission of PRC. (2015). National Report on Nutrition and Chronic Diseases of Chinese Residents. Information Office of State Council. DOI: 10.1109/icit.2006.372374.
[9] J. Yoon, J. Ryu, K.-B. Lim. (2006). Reconfigurable ankle rehabilitation robot for various exercises. Journal of Robotic Systems.22(S1):S15-S33. DOI: 10.1109/icit.2006.372374.
[10] Chinese Academy of Standardization and Information Classified Coding. (1988). Human dimensions of Chinese adults. . DOI: 10.1109/icit.2006.372374.
[11] J. A. Saglia, N. G. Tsagarakis, J. S. Dai, D. G. Caldwell. et al.(2009). A high-performance redundantly actuated parallel mechanism for ankle rehabilitation. International Journal of Robotics Research.28(9):1216-1227. DOI: 10.1109/icit.2006.372374.
[12] A. Roy, H. I. Krebs, D. J. Williams, C. T. Bever. et al.(2009). Robot-aided neurorehabilitation: a novel robot for ankle rehabilitation. IEEE Transactions on Robotics.25(3):569-582. DOI: 10.1109/icit.2006.372374.
[13] Y. Hashimoto, S. Komada, J. Hirai. Development of a biofeedback therapeutic exercise supporting manipulator for lower limbs. :352-357. DOI: 10.1109/icit.2006.372374.
[14] Z. M. Bi. (2013). Design of a spherical parallel kinematic machine for ankle rehabilitation. Advanced Robotics.27(2):121-132. DOI: 10.1109/icit.2006.372374.
[15] A. Agrawal, V. Sangwan, S. K. Banala, S. K. Agrawal. et al.(2007). Design of a novel two degree-of-freedom ankle-foot orthosis. Journal of Mechanical Design.129(11):1137-1143. DOI: 10.1109/icit.2006.372374.
[16] Z. Lu, C. Wang, L. Duan, Q. Liu. et al.Development of an ankle robot MKA-III for rehabilitation training. :523-527. DOI: 10.1109/icit.2006.372374.
[17] M. Zhang, W. Meng, T. C. Davies, Y. Zhang. et al.(2016). A robot-driven computational model for estimating passive ankle torque with subject-specific adaptation. IEEE Transactions on Biomedical Engineering.63(4):814-821. DOI: 10.1109/icit.2006.372374.
[18] P. K. Jamwal, S. Xie, K. C. Aw. (2009). Kinematic design optimization of a parallel ankle rehabilitation robot using modified genetic algorithm. Robotics and Autonomous Systems.57(10):1018-1027. DOI: 10.1109/icit.2006.372374.
[19] J. A. Saglia, N. G. Tsagarakis, J. S. Dai, D. G. Caldwell. et al.A high performance 2-DoF over-actuated parallel mechanism for ankle rehabilitation. :2180-2186. DOI: 10.1109/icit.2006.372374.
[20] F. Aggogeri, N. Pellegrini, R. Adamini. (2016). Functional design in rehabilitation: modular mechanisms for ankle complex. Applied Bionics and Biomechanics.2016-8. DOI: 10.1109/icit.2006.372374.
[21] J. Yoon, J. Ryu. A novel reconfigurable ankle/foot rehabilitation robot. :2290-2295. DOI: 10.1109/icit.2006.372374.
[22] M. S. Ayas, I. H. Altas, E. Sahin. (2016). Fractional order based trajectory tracking control of an ankle rehabilitation robot. Transactions of the Institute of Measurement and Control.40(2):550-564. DOI: 10.1109/icit.2006.372374.
[23] Y. M. Khalid, D. Gouwanda, S. Parasuraman. (2015). A review on the mechanical design elements of ankle rehabilitation robot. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine.229(6):452-463. DOI: 10.1109/icit.2006.372374.
[24] R. Mahoney. Robotic products for rehabilitation: status and strategy. :12-22. DOI: 10.1109/icit.2006.372374.
[25] P. K. Jamwal, S. Q. Xie, S. Hussain, J. G. Parsons. et al.(2014). An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Transactions on Mechatronics.19(1):64-75. DOI: 10.1109/icit.2006.372374.
[26] Z. Q. Qian, Z. M. Bi. (2015). Recent Development of Rehabilitation Robots. Advances in Mechanical Engineering.7(2):1-11. DOI: 10.1109/icit.2006.372374.
[27] Z. Liao, L. Yao, Z. Lu, J. Zhang. et al.(2018). Screw theory based mathematical modeling and kinematic analysis of a novel ankle rehabilitation robot with a constrained 3-PSP mechanism topology. International Journal of Intelligent Robotics and Applications.2(3):351-360. DOI: 10.1109/icit.2006.372374.
[28] L.-W. Wang, H.-P. Li, X.-J. Wang, W.-L. Du. et al.Simulation analysis of bionic auxiliary device for ankle rehabilitation based on RecurDyn. :126-135. DOI: 10.1109/icit.2006.372374.
[29] P. K. Jamwal, S. Q. Xie, Y. H. Tsoi, K. C. Aw. et al.(2010). Forward kinematics modelling of a parallel ankle rehabilitation robot using modified fuzzy inference. Mechanism and Machine Theory.45(11):1537-1554. DOI: 10.1109/icit.2006.372374.
[30] A. Erdogan, B. Celebi, A. C. Satici, V. Patoglu. et al.(2017). Assist on-ankle: a reconfigurable ankle exoskeleton with series-elastic actuation. Autonomous Robots.41(3):743-758. DOI: 10.1109/icit.2006.372374.
[31] M. Girone, G. Burdea, M. Bouzit, V. Popescu. et al.(2001). A Stewart platform-based system for ankle telerehabilitation. Autonomous Robots.10(2):203-212. DOI: 10.1109/icit.2006.372374.
文献评价指标
浏览 5次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次