首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-07-10
Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking COQ6
Research Article
Manuel J. Acosta Lopez 1 , 2 Eva Trevisson 1 , 2 Marcella Canton 2 , 3 Luis Vazquez-Fonseca 1 , 2 Valeria Morbidoni 1 , 2 Elisa Baschiera 1 , 2 Chiara Frasson 2 Ludovic Pelosi 4 Bérengère Rascalou 4 Maria Andrea Desbats 1 , 2 María Alcázar-Fabra 5 José Julián Ríos 6 Alicia Sánchez-García 6 Giuseppe Basso 2 , 7 Placido Navas 5 Fabien Pierrel 4 Gloria Brea-Calvo 5 Leonardo Salviati 1 , 2
Show affiliations
Received 2019-02-03, accepted for publication 2019-05-26, Published 2019-05-26

Coenzyme Q (CoQ), a redox-active lipid, is comprised of a quinone group and a polyisoprenoid tail. It is an electron carrier in the mitochondrial respiratory chain, a cofactor of other mitochondrial dehydrogenases, and an essential antioxidant. CoQ requires a large set of enzymes for its biosynthesis; mutations in genes encoding these proteins cause primary CoQ deficiency, a clinically and genetically heterogeneous group of diseases. Patients with CoQ deficiency often respond to oral CoQ10 supplementation. Treatment is however problematic because of the low bioavailability of CoQ10 and the poor tissue delivery. In recent years, bypass therapy using analogues of the precursor of the aromatic ring of CoQ has been proposed as a promising alternative. We have previously shown using a yeast model that vanillic acid (VA) can bypass mutations of COQ6, a monooxygenase required for the hydroxylation of the C5 carbon of the ring. In this work, we have generated a human cell line lacking functional COQ6 using CRISPR/Cas9 technology. We show that these cells cannot synthesize CoQ and display severe ATP deficiency. Treatment with VA can recover CoQ biosynthesis and ATP production. Moreover, these cells display increased ROS production, which is only partially corrected by exogenous CoQ, while VA restores ROS to normal levels. Furthermore, we show that these cells accumulate 3-decaprenyl-1,4-benzoquinone, suggesting that in mammals, the decarboxylation and C1 hydroxylation reactions occur before or independently of the C5 hydroxylation. Finally, we show that COQ6 isoform c (transcript NM_182480) does not encode an active enzyme. VA can be produced in the liver by the oxidation of vanillin, a nontoxic compound commonly used as a food additive, and crosses the blood-brain barrier. These characteristics make it a promising compound for the treatment of patients with CoQ deficiency due to COQ6 mutations.


Copyright © 2019 Manuel J. Acosta Lopez et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.


1. Gloria Brea-Calvo.Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide and CIBERER, Sevilla, Spain, upo.es.gbrecal@upo.es
2. Leonardo Salviati.Clinical Genetics Unit, Department of Women’s and Children’s Health, University of Padova, Italy, unipd.it;Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy, cittadellasperanza.org.leonardo.salviati@unipd.it


Manuel J. Acosta Lopez,Eva Trevisson,Marcella Canton,Luis Vazquez-Fonseca,Valeria Morbidoni,Elisa Baschiera,Chiara Frasson,Ludovic Pelosi,Bérengère Rascalou,Maria Andrea Desbats,María Alcázar-Fabra,José Julián Ríos,Alicia Sánchez-García,Giuseppe Basso,Placido Navas,Fabien Pierrel,Gloria Brea-Calvo,Leonardo Salviati. Vanillic Acid Restores Coenzyme Q Biosynthesis and ATP Production in Human Cells Lacking COQ6. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)



[1] A. Hidalgo-Gutiérrez, E. Barriocanal-Casado, M. Bakkali, M. E. Díaz-Casado. et al.(2019). ‐RA reduces DMQ/CoQ ratio and rescues the encephalopathic phenotype in mice. EMBO Molecular Medicine.11(1, article e9466). DOI: 10.1016/j.bbamem.2003.11.012.
[2] Y. Wang, D. Oxer, S. Hekimi. (2015). Mitochondrial function and lifespan of mice with controlled ubiquinone biosynthesis. Nature Communications.6(1, article 6393). DOI: 10.1016/j.bbamem.2003.11.012.
[3] M. Ozeir, U. Muhlenhoff, H. Webert, R. Lill. et al.(2011). Coenzyme Q biosynthesis: Coq6 is required for the C5-hydroxylation reaction and substrate analogs rescue Coq6 deficiency. Chemistry & Biology.18(9):1134-1142. DOI: 10.1016/j.bbamem.2003.11.012.
[4] R. Montioli, M. A. Desbats, S. Grottelli, M. Doimo. et al.(2018). Molecular and cellular basis of ornithine -aminotransferase deficiency caused by the V332M mutation associated with gyrate atrophy of the choroid and retina. Biochimica et Biophysica Acta - Molecular Basis of Disease.1864(11):3629-3638. DOI: 10.1016/j.bbamem.2003.11.012.
[5] S. Cipolat, O. M. de Brito, B. Dal Zilio, L. Scorrano. et al.(2004). OPA1 requires mitofusin 1 to promote mitochondrial fusion. Proceedings of the National Academy of Sciences of the United States of America.101(45):15927-15932. DOI: 10.1016/j.bbamem.2003.11.012.
[6] A. R. Rosenkranz, S. Schmaldienst, K. M. Stuhlmeier, W. Chen. et al.(1992). A microplate assay for the detection of oxidative products using 2,7-dichlorofluorescin-diacetate. Journal of Immunological Methods.156(1):39-45. DOI: 10.1016/j.bbamem.2003.11.012.
[7] R. Saiki, A. L. Lunceford, Y. Shi, B. Marbois. et al.(2008). Coenzyme Q supplementation rescues renal disease in mice with mutations in prenyl diphosphate synthase subunit 2. American Journal of Physiology-Renal Physiology.295(5):F1535-F1544. DOI: 10.1016/j.bbamem.2003.11.012.
[8] M. Turunen, J. Olsson, G. Dallner. (2004). Metabolism and function of coenzyme Q. Biochimica et Biophysica Acta - Biomembranes.1660(1-2):171-199. DOI: 10.1016/j.bbamem.2003.11.012.
[9] M. Alcázar-Fabra, E. Trevisson, G. Brea-Calvo. (2018). Clinical syndromes associated with coenzyme Q deficiency. Essays in Biochemistry.62(3):377-398. DOI: 10.1016/j.bbamem.2003.11.012.
[10] T. P. T. Nguyen, A. Casarin, M. A. Desbats, M. Doimo. et al.(2014). Molecular characterization of the human COQ5 C-methyltransferase in coenzyme Q biosynthesis. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids.1841(11):1628-1638. DOI: 10.1016/j.bbamem.2003.11.012.
[11] Y. Wang, C. Smith, J. S. Parboosingh, A. Khan. et al.(2017). Pathogenicity of two mutations and responses to 2,4-dihydroxybenzoate bypass treatment. Journal of Cellular and Molecular Medicine.21(10):2329-2343. DOI: 10.1016/j.bbamem.2003.11.012.
[12] S. F. Heeringa, G. Chernin, M. Chaki, W. Zhou. et al.(2011). mutations in human patients produce nephrotic syndrome with sensorineural deafness. The Journal of Clinical Investigation.121(5):2013-2024. DOI: 10.1016/j.bbamem.2003.11.012.
[13] J. A. Stefely, D. J. Pagliarini. (2017). Biochemistry of mitochondrial coenzyme Q biosynthesis. Trends in Biochemical Sciences.42(10):824-843. DOI: 10.1016/j.bbamem.2003.11.012.
[14] C. Freyer, H. Stranneheim, K. Naess, A. Mourier. et al.(2015). Rescue of primary ubiquinone deficiency due to a novel defect using 2,4–dihydroxybensoic acid. Journal of Medical Genetics.52(11):779-783. DOI: 10.1016/j.bbamem.2003.11.012.
[15] J. M. Lopez-Martin, L. Salviati, E. Trevisson, G. Montini. et al.(2007). Missense mutation of the gene causes defects of bioenergetics and de novo pyrimidine synthesis. Human Molecular Genetics.16(9):1091-1097. DOI: 10.1016/j.bbamem.2003.11.012.
[16] F. A. Muskiet, A. Groen. (1979). Urinary excretion of conjugated homovanillic acid, 3,4-dihydroxyphenylacetic acid, p-hydroxyphenylacetic acid, and vanillic acid by persons on their usual diet and patients with neuroblastoma. Clinical Chemistry.25(7):1281-1284. DOI: 10.1016/j.bbamem.2003.11.012.
[17] L. A. Payet, M. Leroux, J. C. Willison, A. Kihara. et al.(2016). Mechanistic details of early steps in coenzyme Q biosynthesis pathway in yeast. Cell Chemical Biology.23(10):1241-1250. DOI: 10.1016/j.bbamem.2003.11.012.
[18] M. Kawamukai. (2016). Biosynthesis of coenzyme Q in eukaryotes. Bioscience, Biotechnology, and Biochemistry.80(1):23-33. DOI: 10.1016/j.bbamem.2003.11.012.
[19] C. Cerqua, V. Morbidoni, M. A. Desbats, M. Doimo. et al.(2018). is required for assembly of cytochrome c oxidase in human cells and is involved in copper delivery to COX2. Biochimica et Biophysica Acta - Bioenergetics.1859(4):244-252. DOI: 10.1016/j.bbamem.2003.11.012.
[20] V. Giorgio, M. Schiavone, C. Galber, M. Carini. et al.(2018). The idebenone metabolite QS10 restores electron transfer in complex I and coenzyme Q defects. Biochimica et Biophysica Acta - Bioenergetics.1859(9):901-908. DOI: 10.1016/j.bbamem.2003.11.012.
[21] C. M. Quinzii, L. C. Lopez, R. W. Gilkerson, B. Dorado. et al.(2010). Reactive oxygen species, oxidative stress, and cell death correlate with level of CoQ deficiency. The FASEB Journal.24(10):3733-3743. DOI: 10.1016/j.bbamem.2003.11.012.
[22] M. Spinazzi, A. Casarin, V. Pertegato, M. Ermani. et al.(2011). Optimization of respiratory chain enzymatic assays in muscle for the diagnosis of mitochondrial disorders. Mitochondrion.11(6):893-904. DOI: 10.1016/j.bbamem.2003.11.012.
[23] M. J. Falk, E. Polyak, Z. Zhang, M. Peng. et al.(2011). Probucol ameliorates renal and metabolic sequelae of primary CoQ deficiency in mutant mice. EMBO Molecular Medicine.3(7):410-427. DOI: 10.1016/j.bbamem.2003.11.012.
[24] G. T. Hanson, R. Aggeler, D. Oglesbee, M. Cannon. et al.(2004). Investigating mitochondrial redox potential with redox-sensitive green fluorescent protein indicators. The Journal of Biological Chemistry.279(13):13044-13053. DOI: 10.1016/j.bbamem.2003.11.012.
[25] J. A. Stefely, N. W. Kwiecien, E. C. Freiberger, A. L. Richards. et al.(2016). Mitochondrial protein functions elucidated by multi-omic mass spectrometry profiling. Nature Biotechnology.34(11):1191-1197. DOI: 10.1016/j.bbamem.2003.11.012.
[26] G. Panoutsopoulos, C. Beedham. (2005). Enzymatic oxidation of vanillin, isovanillin and protocatechuic aldehyde with freshly prepared guinea pig liver slices. Cellular Physiology and Biochemistry.15(1-4):089-098. DOI: 10.1016/j.bbamem.2003.11.012.
[27] M. Doimo, E. Trevisson, R. Airik, M. Bergdoll. et al.(2014). Effect of vanillic acid on mutants identified in patients with coenzyme Q deficiency. Biochimica et Biophysica Acta - Molecular Basis of Disease.1842(1):1-6. DOI: 10.1016/j.bbamem.2003.11.012.
[28] L. Salviati, E. Trevisson, M. A. Rodriguez Hernandez, A. Casarin. et al.(2012). Haploinsufficiency of causes coenzyme Q deficiency. Journal of Medical Genetics.49(3):187-191. DOI: 10.1016/j.bbamem.2003.11.012.
[29] M. Gitzinger, C. Kemmer, D. A. Fluri, M. Daoud El-Baba. et al.(2012). The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Research.40(5, article e37). DOI: 10.1016/j.bbamem.2003.11.012.
[30] D. Herebian, L. C. Lopez, F. Distelmaier. (2018). Bypassing human CoQ deficiency. Molecular Genetics and Metabolism.123(3):289-291. DOI: 10.1016/j.bbamem.2003.11.012.
[31] M. A. Desbats, V. Morbidoni, M. Silic-Benussi, M. Doimo. et al.(2016). The genotype predicts the severity of coenzyme Q deficiency. Human Molecular Genetics.25(19):4256-4265. DOI: 10.1016/j.bbamem.2003.11.012.
[32] F. Pierrel. (2017). Impact of chemical analogs of 4-hydroxybenzoic acid on coenzyme Q biosynthesis: from inhibition to bypass of coenzyme Q deficiency. Frontiers in Physiology.8, article 436. DOI: 10.1016/j.bbamem.2003.11.012.
[33] B. Marbois, P. Gin, M. Gulmezian, C. F. Clarke. et al.(2009). The yeast Coq4 polypeptide organizes a mitochondrial protein complex essential for coenzyme Q biosynthesis. Biochimica et Biophysica Acta - Molecular and Cell Biology of Lipids.1791(1):69-75. DOI: 10.1016/j.bbamem.2003.11.012.
[34] M. Ozeir, L. Pelosi, A. Ismail, C. Mellot-Draznieks. et al.(2015). Coq6 is responsible for the C4-deamination reaction in coenzyme Q biosynthesis in. The Journal of Biological Chemistry.290(40):24140-24151. DOI: 10.1016/j.bbamem.2003.11.012.
[35] F. Gomez, R. Saiki, R. Chin, C. Srinivasan. et al.(2012). Restoring de novo coenzyme Q biosynthesis in mutants yields profound rescue compared to exogenous coenzyme Q supplementation. Gene.506(1):106-116. DOI: 10.1016/j.bbamem.2003.11.012.
[36] A. Casarin, J. C. Jimenez-Ortega, E. Trevisson, V. Pertegato. et al.(2008). Functional characterization of human COQ4, a gene required for coenzyme Q10 biosynthesis. Biochemical and Biophysical Research Communications.372(1):35-39. DOI: 10.1016/j.bbamem.2003.11.012.
浏览 9次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次