首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-07-07
Modeling of Oxidation Process of Coal Tar Pitch in Rotating Kilns
Research Article
Jun Xie 1 Wenqi Zhong 1 Yingjuan Shao 1 Kaixi Li 2
Show affiliations
DOI:10.1155/2019/1953156
Received 2019-05-17, accepted for publication 2019-06-23, Published 2019-06-23
PDF
摘要

In this paper, a three-dimensional numerical model has been developed to study the process of oxidative weight increment of coal tar pitch in a rotating kiln. Based on the two-fluid method, the gas phase is modeled by realizable k-ε turbulent model and the solid phase is modeled by kinetic theory of granular flow. The dense gas-solid flow, heat transfer, and oxidation reaction for the bed and freeboard regions are simultaneously solved. The model is applied to a rotating kiln with a cylinder of 0.75 m length and 0.4 m diameter in the front and circular truncated cone on exit side. The detailed verification of model is firstly performed by comparisons with the available experimental data. The particle velocity profiles, product gas compositions, and various forms of solid motion in rotary kilns are contrastively analyzed. Afterwards, simulations are carried out to obtain the primary hydrodynamic and reactive characteristics in the rotary kiln. At the steady state, the particle velocity peak is located at the active layer surface, while the velocity has the opposite direction in the passive layer. The bed region generally has a higher temperature than the freeboard due to the large thermal capacity. The concentrations of product gas compositions, such as CO2, CO, and CH4, and solid product of oxidation, increase sharply near the surface and then keep on the steady values inside the bed. The effects of rotational speed of the rotary kiln and flow rate of air are also studied. The increasing rotational speed significantly accelerates the particle movement of the active layer and raises the final oxidative yield of coal pitch spheres. By contrast, increasing the flow rate of air has little effect on the particle motion and oxidation yield of coal pitch.

授权许可

Copyright © 2019 Jun Xie et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Wenqi Zhong.Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, China, seu.edu.cn.wqzhong@seu.edu.cn

推荐引用方式

Jun Xie,Wenqi Zhong,Yingjuan Shao,Kaixi Li. Modeling of Oxidation Process of Coal Tar Pitch in Rotating Kilns. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] T. Guan, G. Zhang, J. Zhao, J. Wang. et al.(2019). Insight into the oxidative reactivity of pitch fractions for predicting and optimizing the oxidation stabilization of pitch. Fuel.242:184-194. DOI: 10.1016/j.carres.2011.03.020.
[2] M. Li, W. Li, S. Liu. (2011). Hydrothermal synthesis, characterization, and KOH activation of carbon spheres from glucose. Carbohydrate Research.346(8):999-1004. DOI: 10.1016/j.carres.2011.03.020.
[3] W. Zhong, A. Yu, G. Zhou, J. Xie. et al.(2016). CFD simulation of dense particulate reaction system: Approaches, recent advances and applications. Chemical Engineering Science.140:16-43. DOI: 10.1016/j.carres.2011.03.020.
[4] L. Le Guen, M. Piton, Q. Hénaut, F. Huchet. et al.(2017). Heat convection and radiation in flighted rotary kilns: A minimal model. The Canadian Journal of Chemical Engineering.95(1):100-110. DOI: 10.1016/j.carres.2011.03.020.
[5] J. Xie, W. Zhong, B. Jin, Y. Shao. et al.(2014). Three-dimensional eulerian-eulerian modeling of gaseous pollutant emissions from circulating fluidized-bed combustors. Energy & Fuels.28(8):5523-5533. DOI: 10.1016/j.carres.2011.03.020.
[6] Q. Zheng, A. Yu. (2015). Modelling the granular flow in a rotating drum by the Eulerian finite element method. Powder Technology.286:361-370. DOI: 10.1016/j.carres.2011.03.020.
[7] Y. Wang, X. Liu, Z. Li, W. Qiao. et al.(2010). Oxidative stabilization of pitch spheres in fluidized bed and their carbonization behavior. Carbon Techniques.6:3. DOI: 10.1016/j.carres.2011.03.020.
[8] H. Liu, H. Yin, M. Zhang, M. Xie. et al.(2016). Numerical simulation of particle motion and heat transfer in a rotary kiln. Powder Technology.287:239-247. DOI: 10.1016/j.carres.2011.03.020.
[9] D. Wenjing, B. Wang, L. Cheng. (2019). Experimental research and numerical analysis on thermal dynamic characteristics of rotary kiln. The Canadian Journal of Chemical Engineering.97(4):1022-1032. DOI: 10.1016/j.carres.2011.03.020.
[10] F. Montagnaro, C. Tregambi, P. Salatino, O. Senneca. et al.(2018). Modelling oxy-pyrolysis of sewage sludge in a rotary kiln reactor. Fuel.231:468-478. DOI: 10.1016/j.carres.2011.03.020.
[11] R. Maione, S. Kiesgen De Richter, G. Mauviel, G. Wild. et al.(2015). DEM investigation of granular flow and binary mixture segregation in a rotating tumbler: Influence of particle shape and internal baffles. Powder Technology.286:732-739. DOI: 10.1016/j.carres.2011.03.020.
[12] Y. Ding, R. Forster, J. Seville, D. Parker. et al.(2002). Segregation of granular flow in the transverse plane of a rolling mode rotating drum. International Journal of Multiphase Flow.28(4):635-663. DOI: 10.1016/j.carres.2011.03.020.
[13] K. S. Mujumdar, V. V. Ranade. (2008). CFD modeling of rotary cement kilns. Asia-Pacific Journal of Chemical Engineering.3(2):106-118. DOI: 10.1016/j.carres.2011.03.020.
[14] R. Yang, A. Yu, L. McElroy, J. Bao. et al.(2008). Numerical simulation of particle dynamics in different flow regimes in a rotating drum. Powder Technology.188(2):170-177. DOI: 10.1016/j.carres.2011.03.020.
[15] N. Gui, J. Yan, W. Xu, L. Ge. et al.(2013). DEM simulation and analysis of particle mixing and heat conduction in a rotating drum. Chemical Engineering Science.97:225-234. DOI: 10.1016/j.carres.2011.03.020.
[16] P. Liu, R. Yang, A. Yu. (2013). DEM study of the transverse mixing of wet particles in rotating drums. Chemical Engineering Science.86:99-107. DOI: 10.1016/j.carres.2011.03.020.
[17] M. U. Babler, A. Phounglamcheik, M. Amovic, R. Ljunggren. et al.(2017). Modeling and pilot plant runs of slow biomass pyrolysis in a rotary kiln. Applied Energy.207:123-133. DOI: 10.1016/j.carres.2011.03.020.
[18] R. Ocone, S. Sundaresan, R. Jackson. (1993). Gas‐Particle flow in a duct of arbitrary inclination with particle‐particle interactions. AIChE Journal.39(8):1261-1271. DOI: 10.1016/j.carres.2011.03.020.
[19] Y. Demagh, H. Ben Moussa, M. Lachi, S. Noui. et al.(2012). Surface particle motions in rotating cylinders: Validation and similarity for an industrial scale kiln. Powder Technology.224:260-272. DOI: 10.1016/j.carres.2011.03.020.
[20] Y. Guo, Y. Shao, W. Zhong, K. Li. et al.(2018). Characteristics of oxidation stabilization process of coal pitch based spheres. Ciesc Journal. DOI: 10.1016/j.carres.2011.03.020.
[21] P. C. Johnson, R. Jackson. (1987). Frictional-collisional constitutive relations for granular materials, with application to plane shearing. Journal of Fluid Mechanics.176:67-93. DOI: 10.1016/j.carres.2011.03.020.
[22] A. Fluent. . DOI: 10.1016/j.carres.2011.03.020.
[23] S. Jiang, Y. Ye, M. He, C. Duan. et al.(2019). Mixing uniformity of irregular sand and gravel materials in a rotating drum with determination of contact model parameters. Powder Technology. DOI: 10.1016/j.carres.2011.03.020.
[24] S. Jiang, Y. Ye, Y. Tan, S. Liu. et al.(2018). Discrete element simulation of particle motion in ball mills based on similarity. Powder Technology.335:91-102. DOI: 10.1016/j.carres.2011.03.020.
[25] A. A. Boateng, P. V. Barr. (1997). Granular flow behaviour in the transverse plane of a partially filled rotating cylinder. Journal of Fluid Mechanics.330:233-249. DOI: 10.1016/j.carres.2011.03.020.
[26] A. J. Romero-Anaya, M. Ouzzine, M. A. Lillo-Ródenas, A. Linares-Solano. et al.(2014). Spherical carbons: synthesis, characterization and activation processes. Carbon.68:296-307. DOI: 10.1016/j.carres.2011.03.020.
[27] D. Gidaspow. (1994). Multiphase Flow and Fluidization: Continuum And Kinetic Theory Descriptions. DOI: 10.1016/j.carres.2011.03.020.
[28] J. Fernández, A. Figueiras, M. Granda, J. Bermejo. et al.(1995). Modification of Coal-Tar Pitch by Air-Blowing .1. Variation of Pitch Composition and Properties. Carbon.33(3):295-307. DOI: 10.1016/j.carres.2011.03.020.
[29] B. Chaudhuri, F. J. Muzzio, M. S. Tomassone. (2006). Modeling of heat transfer in granular flow in rotating vessels. Chemical Engineering Science.61(19):6348-6360. DOI: 10.1016/j.carres.2011.03.020.
[30] J. Mellmann. (2001). The transverse motion of solids in rotating cylinders—forms of motion and transition behavior. Powder Technology.118(3):251-270. DOI: 10.1016/j.carres.2011.03.020.
文献评价指标
浏览 10次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次