首页 » 文章 » 文章详细信息
GEOFLUIDS Volume 2019 ,2019-07-10
How Can Temperature Logs Help Identify Permeable Fractures and Define a Conceptual Model of Fluid Circulation? An Example from Deep Geothermal Wells in the Upper Rhine Graben
Research Article
Jeanne Vidal 1 Régis Hehn 1 Carole Glaas 1 Albert Genter 1
Show affiliations
DOI:10.1155/2019/3978364
Received 2018-11-07, accepted for publication 2019-02-19, Published 2019-02-19
PDF
摘要

Identifying fluid circulation in fracture zones (FZs) is a key challenge in the extraction of deep geothermal heat from natural reservoirs in the Upper Rhine Graben. This study focuses on permeable FZs present within the granitic basement penetrated by deep geothermal well GPK-1 at Soultz and GRT-1 and GRT-2 at Rittershoffen (France). The various temperature (T) log datasets acquired from these wells during production and at equilibrium, with the associated flow logs, allow for the unique opportunity to interpret fluid circulation at the borehole scale. All permeable FZs identified by permeability indicators measured during drilling operations and from image logs spatially coincide with positive or negative T anomalies observed in the T logs during production and/or at equilibrium. However, within the FZs, partially open fractures act as narrower paths for circulation at different temperatures. These temperatures can even be estimated with confidence if the associated flow log is available. The polarity of the T anomalies correlates with the state of equilibrium of the well and thus can change over the well history. During production, the temperature of the water inflow through the fractures can be estimated relative to the mixture of water circulating below the fractures. At thermal equilibrium, the water temperature is estimated with respect to the temperature of the surrounding rock formation. Because temperature fluxes and geothermal fluids are intimately linked, T logs are a useful, reliable, and very sensitive tool to localize the inflow of geothermal water through FZs.

授权许可

Copyright © 2019 Jeanne Vidal et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jeanne Vidal.ES-Géothermie, Bat Le Belem 5 rue de Lisbonne, 67300 Schiltigheim, France, geothermie.es.fr.jeannevidal@ing.uchile.cl

推荐引用方式

Jeanne Vidal,Régis Hehn,Carole Glaas,Albert Genter. How Can Temperature Logs Help Identify Permeable Fractures and Define a Conceptual Model of Fluid Circulation? An Example from Deep Geothermal Wells in the Upper Rhine Graben. GEOFLUIDS ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] D. Bächler, T. Kohl, L. Rybach. (2003). Impact of graben-parallel faults on hydrothermal convection-Rhine Graben case study. Physics and Chemistry of the Earth.28(9-11):431-441. DOI: 10.1080/00206814.2013.794914.
[2] A. Genter, H. Traineau, B. Ledésert, B. Bourgine. et al.Over 10 years of geological investigations within the HDR Soultz project, France. . DOI: 10.1080/00206814.2013.794914.
[3] M. P. Smith, V. Savary, B. W. D. Yardley, J. W. Valley. et al.(1998). The evolution of the deep flow regime at Soultz-sous-Forêts, Rhine Graben, eastern France: evidence from a composite quartz vein. Journal of Geophysical Research: Solid Earth.103(B11):27223-27237. DOI: 10.1080/00206814.2013.794914.
[4] K. F. Evans, A. Genter, J. Sausse. (2005). Permeability creation and damage due to massive fluid injections into granite at 3.5 km at Soultz: 1. Borehole observations. Journal of Geophysical Research: Solid Earth.110(B4). DOI: 10.1080/00206814.2013.794914.
[5] J. Sausse, M. Fourar, A. Genter. (2006). Permeability and alteration within the Soultz granite inferred from geophysical and flow log analysis. Geothermics.35(5-6):544-560. DOI: 10.1080/00206814.2013.794914.
[6] L. Aquilina, M. Brach, J. C. Foucher, A. De Las Heras. et al.(1993). Deepening of GPK-1 HDR Borehole 2000-3600 m (Soultz-sous-Forêts, France), Geochemical Monitoring of Drilling Fluids (open file no. R36619). DOI: 10.1080/00206814.2013.794914.
[7] C. Dezayes, A. Genter, B. Valley. (2010). Structure of the low permeable naturally fractured geothermal reservoir at Soultz. Comptes Rendus Geoscience.342(7-8):517-530. DOI: 10.1080/00206814.2013.794914.
[8] H. Traineau, A. Genter, J.-P. Cautru, H. Fabriol. et al.(1992). Petrography of the granite massif from drill cutting analysis and well log interpretation in the geothermal HDR borehole GPK-1 (Soultz, Alsace, France). Geothermal Energy in Europe—The Soultz Hot Dry Rock Project:1-29. DOI: 10.1080/00206814.2013.794914.
[9] F.-D. Vuataz, M. Brach, A. Criaud, C. Fouillac. et al.(1990). Geochemical monitoring of drilling fluids: a powerful tool to forecast and detect formation waters. SPE Formation Evaluation.5(2):177-184. DOI: 10.1080/00206814.2013.794914.
[10] D. Pribnow, C. Clauser. Heat and fluid flow at the Soultz Hot Dry Rock system in the Rhine Graben. . DOI: 10.1080/00206814.2013.794914.
[11] C. Meller, A. Kontny, T. Kohl. (2014). Identification and characterization of hydrothermally altered zones in granite by combining synthetic clay content logs with magnetic mineralogical investigations of drilled rock cuttings. Geophysical Journal International.199(1):465-479. DOI: 10.1080/00206814.2013.794914.
[12] A. Genter, K. Evans, N. Cuenot, D. Fritsch. et al.(2010). Contribution of the exploration of deep crystalline fractured reservoir of Soultz to the knowledge of enhanced geothermal systems (EGS). Comptes Rendus Geoscience.342(7-8):502-516. DOI: 10.1080/00206814.2013.794914.
[13] D. Pribnow, R. Schellschmidt. (2000). Thermal tracking of upper crustal fluid flow in the Rhine Graben. Geophysical Research Letters.27(13):1957-1960. DOI: 10.1080/00206814.2013.794914.
[14] J. Vidal, A. Genter, F. Chopin, E. Dalmais. et al.Natural fractures and permeability at the geothermal site Rittershoffen, France. . DOI: 10.1080/00206814.2013.794914.
[15] Y. Benderitter, P. Elsass. (1995). Structural control of deep fluid circulation at the Soultz HDR site, France: a review, France. Geothermal Science and Technology.4:227-237. DOI: 10.1080/00206814.2013.794914.
[16] A. Genter, C. Castaing, C. Dezayes, H. Tenzer. et al.(1997). Comparative analysis of direct (core) and indirect (borehole imaging tools) collection of fracture data in the Hot Dry Rock Soultz reservoir (France). Journal of Geophysical Research.102(B7):15419-15431. DOI: 10.1080/00206814.2013.794914.
[17] M. Dubois, B. Ledésert, J. L. Potdevin, S. Vançon. et al.(2000). Détermination des conditions de précipitation des carbonates dans une zone d’altération du granite de Soultz (soubassement du fossé Rhénan, France) : l’enregistrement des inclusions fluides. Comptes Rendus de l'Académie des Sciences - Series IIA - Earth and Planetary Science.331(4):303-309. DOI: 10.1080/00206814.2013.794914.
[18] J. Bradford, J. McLennan, J. Moore, D. Glasby. et al.Recent developments at the Raft River geothermal field. . DOI: 10.1080/00206814.2013.794914.
[19] R. Jung. (1992). Hydraulic fracturing and hydraulic testing in the granitic section of borehole GPK-1, Soultz-sous-Forêts. Geothermal Energy in Europe - The Soultz Hot Dry Rock Project:149-198. DOI: 10.1080/00206814.2013.794914.
[20] C. A. Barton, M. D. Zoback, D. Moos. (1995). Fluid flow along potentially active faults in crystalline rock. Geology.23(8):683-686. DOI: 10.1080/00206814.2013.794914.
[21] J. Vidal, A. Genter, F. Chopin. (2017). Permeable fracture zones in the hard rocks of the geothermal reservoir at Rittershoffen, France. Journal of Geophysical Research: Solid Earth.122(7):4864-4887. DOI: 10.1080/00206814.2013.794914.
[22] S. Gentier, X. Rachez, T. D. T. Ngoc, M. Peter-Borie. et al.3D flow modelling of the medium-term circulation test performed in the deep geothermal site of Soultz-sous-Forêts (France). . DOI: 10.1080/00206814.2013.794914.
[23] S. Gentier, A. Hosni, C. Dezayes, A. Genter. et al.(2004). Projet GEFRAC: modélisation du comportement hydro-thermo-mécanique des milieux fracturés (module 1) (Open file report No. BRGM/RP-52702-FR). DOI: 10.1080/00206814.2013.794914.
[24] J. Sausse, C. Dezayes, L. Dorbath, A. Genter. et al.(2010). 3D model of fracture zones at Soultz-sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles. Comptes Rendus Geoscience.342(7-8):531-545. DOI: 10.1080/00206814.2013.794914.
[25] P. Baillieux, E. Schill, J.-B. Edel, G. Mauri. et al.(2013). Localization of temperature anomalies in the Upper Rhine Graben: insights from geophysics and neotectonic activity. International Geology Review.55(14):1744-1762. DOI: 10.1080/00206814.2013.794914.
[26] A. Mas, D. Guisseau, P. Patrier Mas, D. Beaufort. et al.(2006). Clay minerals related to the hydrothermal activity of the Bouillante geothermal field (Guadeloupe). Journal of Volcanology and Geothermal Research.158(3-4):380-400. DOI: 10.1080/00206814.2013.794914.
[27] O. Lengliné, M. Boubacar, J. Schmittbuhl. (2017). Seismicity related to the hydraulic stimulation of GRT1, Rittershoffen, France. Geophysical Journal International.208(3):1704-1715. DOI: 10.1080/00206814.2013.794914.
[28] J. Place, M. Diraison, C. Naville, Y. Géraud. et al.(2010). Decoupling of deformation in the Upper Rhine Graben sediments. Seismic reflection and diffraction on 3-component vertical seismic profiling (Soultz-sous-Forêts area). Comptes Rendus Geoscience.342(7-8):575-586. DOI: 10.1080/00206814.2013.794914.
[29] C. Le Carlier, J.-J. Royer, E. L. Flores. (1994). Convetive heat transfer at the Soultz-sous-Forets geothermal site: implications for oil potential. First Break.12(1285). DOI: 10.1080/00206814.2013.794914.
[30] V. Magnenet, C. Fond, A. Genter, J. Schmittbuhl. et al.(2014). Two-dimensional THM modelling of the large scale natural hydrothermal circulation at Soultz-sous-Forêts. Geothermal Energy.2(1). DOI: 10.1080/00206814.2013.794914.
[31] S. Bellani, A. Brogi, A. Lazzarotto, D. Liotta. et al.(2004). Heat flow, deep temperatures and extensional structures in the Larderello geothermal field (Italy): constraints on geothermal fluid flow. Journal of Volcanology and Geothermal Research.132(1):15-29. DOI: 10.1080/00206814.2013.794914.
[32] S. Alevizos, T. Poulet, E. Veveakis. (2014). Thermo-poro-mechanics of chemically active creeping faults. 1: theory and steady state considerations. Journal of Geophysical Research: Solid Earth.119(6):4558-4582. DOI: 10.1080/00206814.2013.794914.
[33] GeORG Team. (2017). EU-Projekt GeORG - Geoportal [WWW Document]. . DOI: 10.1080/00206814.2013.794914.
[34] R. Tung, T. Poulet, M. Peters, M. Veveakis. et al.Explaining high permeability on localised fault zones through THMC feedbacks - a Soultz-sous-Forêts inspired approach. . DOI: 10.1080/00206814.2013.794914.
[35] A. Genter, H. Traineau. (1996). Analysis of macroscopic fractures in granite in the HDR geothermal well EPS-1, Soultz-sous-Forêts, France. Journal of Volcanology and Geothermal Research.72(1-2):121-141. DOI: 10.1080/00206814.2013.794914.
[36] B. C. Valley, K. F. Evans. Stress state at Soultz-sous-Forêts to 5 km depth from wellbore failure and hydraulic observations. . DOI: 10.1080/00206814.2013.794914.
[37] B. Sanjuan, R. Millot, C. Dezayes, M. Brach. et al.(2010). Main characteristics of the deep geothermal brine (5 km) at Soultz-sous-Forêts (France) determined using geochemical and tracer test data. Comptes Rendus Geoscience.342(7-8):546-559. DOI: 10.1080/00206814.2013.794914.
[38] A. Gérard, A. Genter, T. Kohl, P. Lutz. et al.(2006). The deep EGS (enhanced geothermal system) project at Soultz-sous-Forêts (Alsace, France). Geothermics.35(5-6):473-483. DOI: 10.1080/00206814.2013.794914.
[39] B. Sanjuan, J. Scheiber, F. Gal, S. Touzelet. et al.Interwell chemical tracer testing at the Rittershoffen site (Alsace, France). . DOI: 10.1080/00206814.2013.794914.
[40] J. Baumgärtner, D. Teza, T. Hettkamp, G. Homeier. et al.Electricity production from hot rocks. . DOI: 10.1080/00206814.2013.794914.
[41] G. R. Hooijkaas, A. Genter, C. Dezayes. (2006). Deep-seated geology of the granite intrusions at the Soultz EGS site based on data from 5 km-deep boreholes. Geothermics.35(5-6):484-506. DOI: 10.1080/00206814.2013.794914.
[42] D. Curewitz, J. A. Karson. (1997). Structural settings of hydrothermal outflow: fracture permeability maintained by fault propagation and interaction. Journal of Volcanology and Geothermal Research.79(3-4):149-168. DOI: 10.1080/00206814.2013.794914.
[43] J. Vidal, A. Genter. (2018). Overview of naturally permeable fractured reservoirs in the central and southern Upper Rhine Graben: insights from geothermal wells. Geothermics.74:57-73. DOI: 10.1080/00206814.2013.794914.
[44] N. C. Davatzes, S. H. Hickman. (2005). Controls on fault-hosted fluid flow; preliminary results from the Coso geothermal field, CA. Geothermal Resources Council Transactions:343-348. DOI: 10.1080/00206814.2013.794914.
[45] B. Ledésert, G. Berger, A. Meunier, A. Genter. et al.(1999). Diagenetic-type reactions related to hydrothermal alteration in the Soultz-sous-Forêts Granite, France. European Journal of Mineralogy.11(4):731-742. DOI: 10.1080/00206814.2013.794914.
[46] J. Vidal, A. Genter, C. Glaas, R. Hehn. et al.(2018). Temperature Signature of Permeable Fracture Zones in Geothermal Wells of Soultz-sous-Forêts in the Upper Rhine Graben. DOI: 10.1080/00206814.2013.794914.
[47] J. Vidal, P. Patrier, A. Genter, D. Beaufort. et al.(2018). Clay minerals related to the circulation of geothermal fluids in boreholes at Rittershoffen (Alsace, France). Journal of Volcanology and Geothermal Research.349:192-204. DOI: 10.1080/00206814.2013.794914.
[48] C. Glaas, A. Genter, J. F. Girard, P. Patrier. et al.(2018). How do the geological and geophysical signatures of permeable fractures in granitic basement evolve after long periods of natural circulation? Insights from the Rittershoffen geothermal wells (France). Geothermal Energy.6(1):14. DOI: 10.1080/00206814.2013.794914.
[49] J. E. Faulds, N. H. Hinz. Favorable tectonic and structural settings of geothermal systems in the Great Basin region, Western USA: proxies for discovering blind geothermal systems. . DOI: 10.1080/00206814.2013.794914.
[50] J. Baumgärtner, C. Lerch. Geothermal 2.0: the Insheim geothermal power plant. The second generation of geothermal power plants in the Upper Rhine Graben. . DOI: 10.1080/00206814.2013.794914.
[51] J. Sausse, C. Dezayes, A. Genter, A. Bisset. et al.Characterization of fracture connectivity and fluid flow pathways derived from geological interpretation and 3D modelling of the deep seated EGS reservoir of Soultz (France). . DOI: 10.1080/00206814.2013.794914.
[52] R. Hehn, A. Genter, J. Vidal, C. Baujard. et al.Stress field rotation in the EGS well GRT-1 (Rittershoffen, France). . DOI: 10.1080/00206814.2013.794914.
[53] C. Baujard, A. Genter, E. Dalmais, V. Maurer. et al.(2017). Hydrothermal characterization of wells GRT-1 and GRT-2 in Rittershoffen, France: implications on the understanding of natural flow systems in the Rhine graben. Geothermics.65:255-268. DOI: 10.1080/00206814.2013.794914.
[54] T. Hettkamp, J. Baumgärtner, D. Teza, C. Lerch. et al.Experiences from 5 years operation in Landau. . DOI: 10.1080/00206814.2013.794914.
[55] P. Baillieux, E. Schill, Y. Abdelfettah, C. Dezayes. et al.(2014). Possible natural fluid pathways from gravity pseudo-tomography in the geothermal fields of northern Alsace (Upper Rhine Graben). Geothermal Energy.2(1). DOI: 10.1080/00206814.2013.794914.
[56] A. Genter, C. Baujard, N. Cuenot, C. Dezayes. et al.Geology, geophysics and geochemistry in the Upper Rhine Graben: the frame for geothermal energy use. . DOI: 10.1080/00206814.2013.794914.
[57] C. Dezayes, A. Genter, S. Gentier. (2005). Deep geothermal energy in Western Europe: the Soultz Project - Final Report (open file no. BRGM/RP-54227-Fr). DOI: 10.1080/00206814.2013.794914.
文献评价指标
浏览 13次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次