首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-07
Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals
Research Article
Roozbeh Zarei 1 , 2 Jing He 3 , 4 Siuly Siuly 5 Guangyan Huang 2 Yanchun Zhang 5
Show affiliations
DOI:10.1155/2019/5173589
Received 2019-03-24, accepted for publication 2019-06-16, Published 2019-06-16
PDF
摘要

Discovering the concealed patterns of Electroencephalogram (EEG) signals is a crucial part in efficient detection of epileptic seizures. This study develops a new scheme based on Douglas-Peucker algorithm (DP) and principal component analysis (PCA) for extraction of representative and discriminatory information from epileptic EEG data. As the multichannel EEG signals are highly correlated and are in large volumes, the DP algorithm is applied to extract the most representative samples from EEG data. The PCA is utilised to produce uncorrelated variables and to reduce the dimensionality of the DP samples for better recognition. To verify the robustness of the proposed method, four machine learning techniques, random forest classifier (RF), k-nearest neighbour algorithm (k-NN), support vector machine (SVM), and decision tree classifier (DT), are employed on the obtained features. Furthermore, we assess the performance of the proposed methods by comparing it with some recently reported algorithms. The experimental results show that the DP technique effectively extracts the representative samples from EEG signals compressing up to over 47% sample points of EEG signals. The results also indicate that the proposed feature method with the RF classifier achieves the best performance and yields 99.85% of the overall classification accuracy (OCA). The proposed method outperforms the most recently reported methods in terms of OCA in the same epileptic EEG database.

授权许可

Copyright © 2019 Roozbeh Zarei et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jing He.Institute of Information Technology, Nanjing University of Finance and Economics, Nanjing, China, njue.edu.cn;Swinburne Data Science Research Institute, Swinburne University of Technology, Melbourne, Australia, swinburne.edu.au.lotusjing@gmail.com

推荐引用方式

Roozbeh Zarei,Jing He,Siuly Siuly,Guangyan Huang,Yanchun Zhang. Exploring Douglas-Peucker Algorithm in the Detection of Epileptic Seizure from Multicategory EEG Signals. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. Boucheham, Y. Ferdi, M. C. Batouche. (2006). Recursive versus sequential multiple error measures reduction: A curve simplification approach to ECG data compression. Computer Methods and Programs in Biomedicine.81(2):162-173. DOI: 10.1111/j.1528-1167.2011.03121.x.
[2] J. A. García, J. Fdez-Valdivia. (1994). Boundary simplification in cartography preserving the characteristics of the shape features. Computers & Geosciences.20(3):349-368. DOI: 10.1111/j.1528-1167.2011.03121.x.
[3] K. Zhang, J. Yan, S.-C. Chen. (2006). Automatic construction of building footprints from airborne LIDAR data. IEEE Transactions on Geoscience and Remote Sensing.44(9):2523-2533. DOI: 10.1111/j.1528-1167.2011.03121.x.
[4] N. Moghim, D. W. Corne. (2014). Predicting epileptic seizures in advance. PLoS ONE.9(6). DOI: 10.1111/j.1528-1167.2011.03121.x.
[5] Y. Song, J. Crowcroft, J. Zhang. (2012). Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine. Journal of Neuroscience Methods.210(2):132-146. DOI: 10.1111/j.1528-1167.2011.03121.x.
[6] R. K. Begg, M. Palaniswami, B. Owen. (2005). Support vector machines for automated gait classification. IEEE Transactions on Biomedical Engineering.52(5):828-838. DOI: 10.1111/j.1528-1167.2011.03121.x.
[7] V. N. Vapnik, V. Vapnik. (1998). Statistical Learning Theory.1. DOI: 10.1111/j.1528-1167.2011.03121.x.
[8] E. D. Übeyli. (2008). Analysis of EEG signals by combining eigenvector methods and multiclass support vector machines. Computers in Biology and Medicine.38(1):14-22. DOI: 10.1111/j.1528-1167.2011.03121.x.
[9] R. G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke. et al.(2001). Indications of nonlinear deterministic and finite-dimensional structures in time series of brain electrical activity: dependence on recording region and brain state. Physical Review E: Statistical, Nonlinear, and Soft Matter Physics.64(6). DOI: 10.1111/j.1528-1167.2011.03121.x.
[10] A. Orzan, A. Bousseau, P. Barla, H. Winnemöller. et al.(2013). Diffusion curves: A vector representation for smooth-shaded images. Communications of the ACM.56(7):101-109. DOI: 10.1111/j.1528-1167.2011.03121.x.
[11] U. R. Acharya, S. V. Sree, G. Swapna, R. J. Martis. et al.(2013). Automated EEG analysis of epilepsy: a review. Knowledge-Based Systems.45:147-165. DOI: 10.1111/j.1528-1167.2011.03121.x.
[12] S. Siuly, Y. Li. (2015). Discriminating the brain activities for brain–computer interface applications through the optimal allocation-based approach. Neural Computing and Applications.26(4):799-811. DOI: 10.1111/j.1528-1167.2011.03121.x.
[13] H. Wang, G. Zhuo, Y. Zhang. Analyzing EEG signal data for detection of epileptic seizure: Introducing weight on visibility graph with complex network feature. :56-66. DOI: 10.1111/j.1528-1167.2011.03121.x.
[14] Y. Song, J. Huang, D. Zhou, H. Zha. et al.Iknn: Informative k-nearest neighbor pattern classification. :248-264. DOI: 10.1111/j.1528-1167.2011.03121.x.
[15] V. F. Pisarenko. (1973). The retrieval of harmonics from a covariance function. Geophysical Journal International.33:347-366. DOI: 10.1111/j.1528-1167.2011.03121.x.
[16] S. Li, W. Zhou, Q. Yuan, S. Geng. et al.(2013). Feature extraction and recognition of ictal EEG using EMD and SVM. Computers in Biology and Medicine.43(7):807-816. DOI: 10.1111/j.1528-1167.2011.03121.x.
[17] N. F. Güler, E. D. Übeyli, I. Güler. (2005). Recurrent neural networks employing Lyapunov exponents for EEG signals classification. Expert Systems with Applications.29(3):506-514. DOI: 10.1111/j.1528-1167.2011.03121.x.
[18] S. Siuly, Y. Li. (2015). Designing a robust feature extraction method based on optimum allocation and principal component analysis for epileptic EEG signal classification. Computer Methods and Programs in Biomedicine.119(1):29-42. DOI: 10.1111/j.1528-1167.2011.03121.x.
[19] R. O. Schmidt. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation.34(3):276-280. DOI: 10.1111/j.1528-1167.2011.03121.x.
[20] J. Han, J. Pei, M. Kamber. (2011). Data Mining: Concepts and Techniques. DOI: 10.1111/j.1528-1167.2011.03121.x.
[21] I. Guler, E. D. Ubeyli. (2007). Multiclass support vector machines for EEG-signals classification. IEEE Transactions on Information Technology in Biomedicine.11(2):117-126. DOI: 10.1111/j.1528-1167.2011.03121.x.
[22] EEG time series (epileptic EEG data). . DOI: 10.1111/j.1528-1167.2011.03121.x.
[23] E. Kabir, Siuly, Y. Zhang. (2016). Epileptic seizure detection from EEG signals using logistic model trees. Brain Informatics.3(2):93-100. DOI: 10.1111/j.1528-1167.2011.03121.x.
[24] W. Wu, X. Gao, B. Hong, S. Gao. et al.(2008). Classifying single trial EEG during motor imagery by iterative spatio-spectral pattern learning (ISSPL). IEEE Transactions on Biomedical Engineering.55(6):1733-1743. DOI: 10.1111/j.1528-1167.2011.03121.x.
[25] N. Hazarika, J. Z. Chen, A. C. Tsoi, A. Sergejew. et al.(1997). Classification of EEG signals using the wavelet transform. Signal Processing.59(1):61-72. DOI: 10.1111/j.1528-1167.2011.03121.x.
[26] B. Boucheham. (2007). ShaLTeRR: A contribution to short and long-term redundancy reduction in digital signals. Signal Processing.87(10):2336-2347. DOI: 10.1111/j.1528-1167.2011.03121.x.
[27] G. C. Ray. (1994). An algorithm to separate nonstationary part of a signal using mid-prediction filter. IEEE Transactions on Signal Processing.42(9):2276-2279. DOI: 10.1111/j.1528-1167.2011.03121.x.
[28] I. H. Witten, E. Frank. (2005). Data Mining: Practical Machine Learning Tools and Techniques. DOI: 10.1111/j.1528-1167.2011.03121.x.
[29] B. Boucheham, Y. Ferdi, M. C. Batouche. (2005). Piecewise linear correction of ECG baseline wander: A curve simplification approach. Computer Methods and Programs in Biomedicine.78(1):1-10. DOI: 10.1111/j.1528-1167.2011.03121.x.
[30] S. Mukhopadhyay, G. C. Ray. (1998). A new interpretation of nonlinear energy operator and its efficacy in spike detection. IEEE Transactions on Biomedical Engineering.45(2):180-187. DOI: 10.1111/j.1528-1167.2011.03121.x.
[31] U. R. Acharya, S. V. Sree, P. C. A. Ang, R. Yanti. et al.(2012). Application of non-linear and wavelet based features for the automated identification of epileptic EEG signals. International Journal of Neural Systems.22(2):565-579. DOI: 10.1111/j.1528-1167.2011.03121.x.
[32] K. Natarajan, U. R. Acharya, F. Alias, T. Tiboleng. et al.(2004). Nonlinear analysis of EEG signals at different mental states. Biomedical Engineering Online.3(1, article 7):1. DOI: 10.1111/j.1528-1167.2011.03121.x.
[33] S. Siuly, E. Kabir, H. Wang, Y. Zhang. et al.(2015). Exploring sampling in the detection of multicategory EEG signals. Computational and Mathematical Methods in Medicine.2015-12. DOI: 10.1111/j.1528-1167.2011.03121.x.
[34] U. R. Acharya, F. Molinari, S. V. Sree, S. Chattopadhyay. et al.(2012). Automated diagnosis of epileptic EEG using entropies. Biomedical Signal Processing and Control.7(4):401-408. DOI: 10.1111/j.1528-1167.2011.03121.x.
[35] X. Yin, B. W.-H. Ng, B. M. Fischer, B. Ferguson. et al.(2007). Support vector machine applications in terahertz pulsed signals feature sets. IEEE Sensors Journal.7(12):1597-1607. DOI: 10.1111/j.1528-1167.2011.03121.x.
[36] M.-J. Chuang, S.-T. Wu, S.-H. Tang, X.-M. Lai. et al.(2013). The HDAC inhibitor LBH589 induces ERK-dependent prometaphase arrest in prostate cancer via HDAC6 inactivation and down-regulation. PLoS ONE.8(9). DOI: 10.1111/j.1528-1167.2011.03121.x.
[37] M. Niknazar, S. R. Mousavi, B. Vosoughi Vahdat, M. Sayyah. et al.(2013). A new framework based on recurrence quantification analysis for epileptic seizure detection. IEEE Journal of Biomedical and Health Informatics.17(3):572-578. DOI: 10.1111/j.1528-1167.2011.03121.x.
[38] J. R. Quinlan. (2014). C4. 5: Programs for Machine Learning. DOI: 10.1111/j.1528-1167.2011.03121.x.
[39] S. Siuly, Y. Li, P. P. Wen. (2011). Clustering technique-based least square support vector machine for EEG signal classification. Computer Methods and Programs in Biomedicine.104(3):358-372. DOI: 10.1111/j.1528-1167.2011.03121.x.
[40] S. Ghosh-Dastidar, H. Adeli, N. Dadmehr. (2007). Mixed-band wavelet-chaos-neural network methodology for epilepsy and epileptic seizure detection. IEEE Transactions on Biomedical Engineering.54(9):1545-1551. DOI: 10.1111/j.1528-1167.2011.03121.x.
[41] V. Srinivasan, C. Eswaran, N. Sriraam. (2007). Approximate entropy-based epileptic EEG detection using artificial neural networks. IEEE Transactions on Information Technology in Biomedicine.11(3):288-295. DOI: 10.1111/j.1528-1167.2011.03121.x.
[42] F. Alçin, S. Siuly, V. Bajaj, Y. Guo. et al.(2016). Multi-category EEG signal classification developing time-frequency texture features based Fisher Vector encoding method. Neurocomputing.218:251-258. DOI: 10.1111/j.1528-1167.2011.03121.x.
[43] G. Chen. (2014). Automatic EEG seizure detection using dual-tree complex wavelet-Fourier features. Expert Systems with Applications.41(5):2391-2394. DOI: 10.1111/j.1528-1167.2011.03121.x.
[44] E. D. Übeyli. (2010). Lyapunov exponents/probabilistic neural networks for analysis of EEG signals. Expert Systems with Applications.37(2):985-992. DOI: 10.1111/j.1528-1167.2011.03121.x.
[45] E. D. Übeyli. (2009). Decision support systems for time-varying biomedical signals: EEG signals classification. Expert Systems with Applications.36(2):2275-2284. DOI: 10.1111/j.1528-1167.2011.03121.x.
[46] A. Subasi, E. Erçelebi. (2005). Classification of EEG signals using neural network and logistic regression. Computer Methods and Programs in Biomedicine.78(2):87-99. DOI: 10.1111/j.1528-1167.2011.03121.x.
[47] K. Polat, S. Güneş. (2007). Classification of epileptiform EEG using a hybrid system based on decision tree classifier and fast Fourier transform. Applied Mathematics and Computation.187(2):1017-1026. DOI: 10.1111/j.1528-1167.2011.03121.x.
[48] S. Altunay, Z. Telatar, O. Erogul. (2010). Epileptic EEG detection using the linear prediction error energy. Expert Systems with Applications.37(8):5661-5665. DOI: 10.1111/j.1528-1167.2011.03121.x.
[49] L. Breiman. (2001). Random forest. Machine Learning.45(1):5-32. DOI: 10.1111/j.1528-1167.2011.03121.x.
[50] U. Orhan, M. Hekim, M. Ozer. (2011). EEG signals classification using the K-means clustering and a multilayer perceptron neural network model. Expert Systems with Applications.38(10):13475-13481. DOI: 10.1111/j.1528-1167.2011.03121.x.
[51] R. Zarei, J. He, G. Huang, Y. Zhang. et al.(2016). Effective and efficient detection of premature ventricular contractions based on variation of principal directions. Digital Signal Processing.50:93-102. DOI: 10.1111/j.1528-1167.2011.03121.x.
[52] S. Chandaka, A. Chatterjee, S. Munshi. (2009). Cross-correlation aided support vector machine classifier for classification of EEG signals. Expert Systems with Applications.36(2):1329-1336. DOI: 10.1111/j.1528-1167.2011.03121.x.
[53] C.-C. Chang, C.-J. Lin. (2011). LIBSVM: a library for support vector machines. ACM Transactions on Intelligent Systems and Technology (TIST).2(3):27. DOI: 10.1111/j.1528-1167.2011.03121.x.
[54] T. M. Cover, P. E. Hart. (1967). Nearest neighbor pattern classification. IEEE Transactions on Information Theory.13(1):21-27. DOI: 10.1111/j.1528-1167.2011.03121.x.
[55] G. Ilczuk, R. Mlynarski, A. Wakulicz-Deja, A. Drzewiecka. et al.Rough set techniques for medical diagnosis systems. :837-840. DOI: 10.1111/j.1528-1167.2011.03121.x.
[56] Y. Kumar, M. L. Dewal, R. S. Anand. (2014). Epileptic seizure detection using DWT based fuzzy approximate entropy and support vector machine. Neurocomputing.133(8):271-279. DOI: 10.1111/j.1528-1167.2011.03121.x.
[57] H. Adelia, Z. Zhoub, N. Dadmehrc. (2003). Analysis of EEG records in an epileptic patient using wavelet transform. Journal of Neuroscience Methods.123(1):69-87. DOI: 10.1111/j.1528-1167.2011.03121.x.
[58] E. Frank, M. Hall, G. Holmes, R. Kirkby. et al.(2009). Weka-a machine learning workbench for data mining. Data Mining and Knowledge Discovery Handbook.23:1269-1277. DOI: 10.1111/j.1528-1167.2011.03121.x.
[59] R. Sharma, R. B. Pachori. (2015). Classification of epileptic seizures in EEG signals based on phase space representation of intrinsic mode functions. Expert Systems with Applications.42(3):1106-1117. DOI: 10.1111/j.1528-1167.2011.03121.x.
[60] N. Nicolaou, J. Georgiou. (2012). Detection of epileptic electroencephalogram based on permutation entropy and support vector machines. Expert Systems with Applications.39(1):202-209. DOI: 10.1111/j.1528-1167.2011.03121.x.
[61] S. Supriya, S. Siuly, Y. Zhang. (2016). Automatic epilepsy detection from EEG introducing a new edge weight method in the complex network. IEEE Electronics Letters.52(17):1430-1432. DOI: 10.1111/j.1528-1167.2011.03121.x.
[62] Siuly, Y. Li, P. Wen. (2011). EEG signal classification based on simple random sampling technique with least square support vector machine. International Journal of Biomedical Engineering and Technology.7(4):390-409. DOI: 10.1111/j.1528-1167.2011.03121.x.
[63] S. Supriya, S. Siuly, H. Wang, J. Cao. et al.(2016). Weighted Visibility Graph with Complex Network Features in the Detection of Epilepsy. IEEE Access.4:6554-6566. DOI: 10.1111/j.1528-1167.2011.03121.x.
[64] R. Zarei, J. He, S. Siuly, Y. Zhang. et al.(2017). A PCA aided cross-covariance scheme for discriminative feature extraction from EEG signals. Computer Methods and Programs in Biomedicine.146:47-57. DOI: 10.1111/j.1528-1167.2011.03121.x.
[65] R. S. Fisher, C. Acevedo, A. Arzimanoglou, A. Bogacz. et al.(2014). ILAE official report: a practical clinical definition of epilepsy. Epilepsia.55(4):475-482. DOI: 10.1111/j.1528-1167.2011.03121.x.
[66] A. Surguchov, I. Surgucheva, M. Sharma, V. Singh. et al.(2017). New putative epigenetic mechanism of epilepsy. Frontiers in Neurology.8(3). DOI: 10.1111/j.1528-1167.2011.03121.x.
[67] D. H. Douglas, T. K. Peucker. (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartographica: The International Journal for Geographic Information and Geovisualization.10(2):112-122. DOI: 10.1111/j.1528-1167.2011.03121.x.
[68] H. Ocak. (2009). Automatic detection of epileptic seizures in EEG using discrete wavelet transform and approximate entropy. Expert Systems with Applications.36(2):2027-2036. DOI: 10.1111/j.1528-1167.2011.03121.x.
[69] D. J. Thurman, E. Beghi, C. E. Begley, A. T. Berg. et al.(2011). Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia.52:2-26. DOI: 10.1111/j.1528-1167.2011.03121.x.
[70] U. C. Benz, P. Hofmann, G. Willhauck, I. Lingenfelder. et al.(2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of Photogrammetry and Remote Sensing.58(3-4):239-258. DOI: 10.1111/j.1528-1167.2011.03121.x.
[71] A. R. Hassan, S. Siuly, Y. Zhang. (2016). Epileptic seizure detection in EEG signals using tunable-Q factor wavelet transform and bootstrap aggregating. Computer Methods and Programs in Biomedicine.137:247-259. DOI: 10.1111/j.1528-1167.2011.03121.x.
[72] Z. Iscan, Z. Dokur, T. Demiralp. (2011). Classification of electroencephalogram signals with combined time and frequency features. Expert Systems with Applications.38(8):10499-10505. DOI: 10.1111/j.1528-1167.2011.03121.x.
[73] R. Kumaresan, D. W. Tufts. (1983). Estimating the angles of arrival of multiple plane waves. IEEE Transactions on Aerospace and Electronic Systems.19(1):134-139. DOI: 10.1111/j.1528-1167.2011.03121.x.
[74] H. Adeli, S. Ghosh-Dastidar, N. Dadmehr. (2007). A wavelet-chaos methodology for analysis of EEGs and EEG subbands to detect seizure and epilepsy. IEEE Transactions on Biomedical Engineering.54(2):205-211. DOI: 10.1111/j.1528-1167.2011.03121.x.
[75] S. Xie, S. Krishnan. (2014). Dynamic principal component analysis with nonoverlapping moving window and its applications to epileptic EEG classification. The Scientific World Journal.2014-10. DOI: 10.1111/j.1528-1167.2011.03121.x.
[76] A. S. M. Murugavel, S. Ramakrishnan. (2016). Hierarchical multi-class SVM with ELM kernel for epileptic EEG signal classification. Medical & Biological Engineering & Computing.54(1):149-161. DOI: 10.1111/j.1528-1167.2011.03121.x.
[77] R. O. Duda, P. E. Hart, D. G. Stork. (2001). Pattern Classification. DOI: 10.1111/j.1528-1167.2011.03121.x.
[78] E. Z-Flores, L. Trujillo, A. Sotelo, P. Legrand. et al.(2016). Regularity and Matching Pursuit feature extraction for the detection of epileptic seizures. Journal of Neuroscience Methods.266:107-125. DOI: 10.1111/j.1528-1167.2011.03121.x.
[79] L. I. Smith. (2002). A tutorial on principal components analysis. Cornell University, USA.51:52. DOI: 10.1111/j.1528-1167.2011.03121.x.
[80] R. Zarei. (2017). Developing enhanced classification methods for ecg and eeg signals [PhD Thesis]. DOI: 10.1111/j.1528-1167.2011.03121.x.
[81] K. Revett, M. Szczuka, P. Jahankhani, V. Kodogiannis. et al.Attribute selection for EEG signal classification using rough sets and neural networks. :408-417. DOI: 10.1111/j.1528-1167.2011.03121.x.
[82] S. Siuly, Y. Zhang. (2016). Medical big data: Neurological diseases diagnosis through medical data analysis. Data Science and Engineering.1(2):54-64. DOI: 10.1111/j.1528-1167.2011.03121.x.
文献评价指标
浏览 3次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次