首页 » 文章 » 文章详细信息
BioMed Research International Volume 2019 ,2019-07-07
The Minimum Data Set and Quality Indicators for National Healthcare-Associated Infection Surveillance in Mainland China: Towards Precision Management
Research Article
Hongwu Yao 1 Jijiang Suo 1 Yubin Xing 1 Mingmei Du 1 Yanling Bai 1 Bowei Liu 1 Lu Li 1 Rui Huo 2 Jian Lin 2 Chunping Chen 2 Qiang Fu 3 Yunxi Liu 1
Show affiliations
DOI:10.1155/2019/2936264
Received 2019-04-25, accepted for publication 2019-06-26, Published 2019-06-26
PDF
摘要

The magnitude and scope of the healthcare-associated infections (HCAIs) burden are underestimated worldwide, and have raised public concerns for their adverse effect on patient safety. In China, HCAIs still present an unneglected challenge and economic burden in recent decades. With the purpose of reducing the HCAI prevalence and enhancing precision management, China’s National Nosocomial Infection Management and Quality Control Center (NNIMQCC) had developed a Minimum Data Set (MDS) and corresponding Quality Indicators (QIs) for establishing national HCAI surveillance system, the data elements of which were repeatedly discussed, investigated, and confirmed by consensus of the expert team. The total number of data elements in MDS and QIs were 70 and 64, and they were both classified into seven categorical items. The NNIMQCC also had started two pilot projects to inspect the applicability, feasibility, and reliability of MDS. After years of hard work, more than 400 health facilities in 14 provinces have realized the importance of HCAI surveillance and contributed to developing an ability of exporting automatically standardized data to meet the requirement of MDS and participate in the regional surveillance system. Generally, the emergence of MDS and QIs in China indicates the beginning of the national HCAI surveillance based on information technology and computerized process data. The establishment of MDS aimed to use electronic health process data to ensure the data accuracy and comparability and to provide instructive and ongoing QIs to estimate and monitor the burden of HCAIs, and to evaluate the effects of interventions and direct health policy decision-making.

授权许可

Copyright © 2019 Hongwu Yao et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Qiang Fu.National Institute of Hospital Administration, Beijing, China.mpazy@sina.com
2. Yunxi Liu.Department of Infection Management and Disease Control, Chinese PLA General Hospital, Beijing, China, 301hospital.com.cn.1425628298@qq.com

推荐引用方式

Hongwu Yao,Jijiang Suo,Yubin Xing,Mingmei Du,Yanling Bai,Bowei Liu,Lu Li,Rui Huo,Jian Lin,Chunping Chen,Qiang Fu,Yunxi Liu. The Minimum Data Set and Quality Indicators for National Healthcare-Associated Infection Surveillance in Mainland China: Towards Precision Management. BioMed Research International ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. Leth, J. Møller. (2006). Surveillance of hospital-acquired infections based on electronic hospital registries. Journal of Hospital Infection.62(1):71-79. DOI: 10.1016/S0140-6736(10)61458-4.
[2] L. Zhang, H. Wang, Q. Li, M.-H. Zhao. et al.(2018). Big data and medical research in China. The BMJ.360, article j5910. DOI: 10.1016/S0140-6736(10)61458-4.
[3] E. Cooke, R. Coello, J. Sedgwick, V. Ward. et al.(2000). A national surveillance scheme for hospital associated infections in England. Journal of Hospital Infection.46(1):1-3. DOI: 10.1016/S0140-6736(10)61458-4.
[4] Q. Fu, S. Zhao, Y. X. Liu, Y. H. Guo. et al.(2016). Thought on nosocomial infection management in new period. Chinese Journal of Nosocomiology.26(6):1201-1204. DOI: 10.1016/S0140-6736(10)61458-4.
[5] V. D. Rosenthal, H. Bijie, D. G. Maki. (2012). International nosocomial infection control consortium (INICC) report, data summary of 36 countries, for 2004-2009. American Journal of Infection Control.40(5):396-407. DOI: 10.1016/S0140-6736(10)61458-4.
[6] P. Russo, R. Shaban, D. Macbeth, A. Carter. et al.(2018). Impact of electronic healthcare-associated infection surveillance software on infection prevention resources: a systematic review of the literature. Journal of Hospital Infection.99(1):1-7. DOI: 10.1016/S0140-6736(10)61458-4.
[7] P. L. Russo, S. M. Havers, A. C. Cheng, M. Richards. et al.(2016). Characteristics of national and statewide health care–associated infection surveillance programs: a qualitative study. American Journal of Infection Control.44(12):1505-1510. DOI: 10.1016/S0140-6736(10)61458-4.
[8] B. Allegranzi, S. Bagheri Nejad, C. Combescure, W. Graafmans. et al.(2011). Burden of endemic health-care-associated infection in developing countries: systematic review and meta-analysis. The Lancet.377(9761):228-241. DOI: 10.1016/S0140-6736(10)61458-4.
[9] J. P. Burke. (2003). Infection control - a problem for patient safety. The New England Journal of Medicine.348(7):651-656. DOI: 10.1016/S0140-6736(10)61458-4.
[10] Z. Obermeyer, E. J. Emanuel. (2016). Predicting the future-big data, machine learning, and clinical medicine. The New England Journal of Medicine.375(13):1216-1219. DOI: 10.1016/S0140-6736(10)61458-4.
[11] R. W. Haley, D. H. Culver, J. W. White. (1985). The efficacy of infection surveillance and control programs in preventing nosocomial infections in us hospitals. American Journal of Epidemiology.121(2):182-205. DOI: 10.1016/S0140-6736(10)61458-4.
[12] Q. Fu, J. J. Suo, Y. B. Xing. (2016). Establishment and function of basic data set of healthcare-associated infection monitoring. Chinese Journal of Nosocomiology.26(11):2401-2403. DOI: 10.1016/S0140-6736(10)61458-4.
[13] M. S. van Mourik, E. N. Perencevich, P. Gastmeier, M. J. Bonten. et al.(2018). Designing surveillance of healthcare-associated infections in the era of automation and reporting mandates. Clinical Infectious Diseases.66(6):970-976. DOI: 10.1016/S0140-6736(10)61458-4.
[14] A. J. Beck, P. M. Singer, J. Buche, R. W. Manderscheid. et al.(2018). Improving data for behavioral health workforce planning: development of a minimum data set. American Journal of Preventive Medicine.54(6):S192-S198. DOI: 10.1016/S0140-6736(10)61458-4.
[15] R. Safdari, M. Ghazi Saeedi, H. Masoumi-Asl, P. Rezaei-Hachesu. et al.(2018). National minimum data set for antimicrobial resistance management: toward global surveillance system. Iranian Journal of Medical Sciences.43(5):495-505. DOI: 10.1016/S0140-6736(10)61458-4.
[16] K. B. Stevenson, J. W. Moore, B. Sleeper. (2004). Validity of the minimum data set in identifying urinary tract infections in residents of long-term care facilities. Journal of the American Geriatrics Society.52(5):707-711. DOI: 10.1016/S0140-6736(10)61458-4.
[17] Y. Fan, J. Zou, X. Cao, Y. Wu. et al.(2019). Data on antibiotic use for detecting clusters of healthcare-associated infection caused by multidrug-resistant organisms in a hospital in China, 2014 to 2017. Journal of Hospital Infection.101(3):305-312. DOI: 10.1016/S0140-6736(10)61458-4.
[18] ECDC. Point prevalence survey of healthcare-associated infections and antimicrobial use in European acute care hospitals. . DOI: 10.1016/S0140-6736(10)61458-4.
[19] WHO. Guidelines on core components of infection prevention and control programmes at the national and acute health care facility level. . DOI: 10.1016/S0140-6736(10)61458-4.
[20] J. Storr, A. Twyman, W. Zingg. (2017). Core components for effective infection prevention and control programmes: new WHO evidence-based recommendations. Antimicrobial Resistance & Infection Control.6, article 6. DOI: 10.1016/S0140-6736(10)61458-4.
[21] T. Karopka, G. Mernitz, M. L. Mogensen. Minimum data set and standards in the context of nosocomial infection surveillance and antimicrobial stewardship. . DOI: 10.1016/S0140-6736(10)61458-4.
[22] J. Wang, F. Liu, E. Tartari. (2018). The prevalence of healthcare-associated infections in mainland china: a systematic review and meta-analysis. Infection Control and Hospital Epidemiology.39(6):701-709. DOI: 10.1016/S0140-6736(10)61458-4.
[23] ECDC. Data quality monitoring and surveillance system evaluation - a handbook of methods and applications. . DOI: 10.1016/S0140-6736(10)61458-4.
[24] M. E. Sips, M. J. Bonten, M. S. van Mourik. (2017). Automated surveillance of healthcare-associated infections. Current Opinion in Infectious Diseases.30(4):425-431. DOI: 10.1016/S0140-6736(10)61458-4.
[25] WHO. Patient safety. The burden of health care-associated infection worldwide. . DOI: 10.1016/S0140-6736(10)61458-4.
[26] N. Ren, X. W. Mao, A. H. Wu. (2016). Nationwide cross-sectional survey on healthcare-associated infection in 2014. Chinese Journal of Infection and Control.15(2):83-99. DOI: 10.1016/S0140-6736(10)61458-4.
[27] Y. B. Xing, J. J. Suo, M. M. Du. (2016). Standardized basic data elements for monitoring of healthcare-associated infection. Chinese Journal of Nosocomiology.26(11):2408-2410. DOI: 10.1016/S0140-6736(10)61458-4.
[28] B. Sun. (2016). Nosocomial infection in China: management status and solutions. American Journal of Infection Control.44(7):851-852. DOI: 10.1016/S0140-6736(10)61458-4.
[29] R. Coello, P. Gastmeier, A. S. De Boer. (2001). Surveillance of hospital-acquired infection in england, germany, and the netherlands: will international comparison of rates be possible?. Infection Control and Hospital Epidemiology.22(6):393-397. DOI: 10.1016/S0140-6736(10)61458-4.
文献评价指标
浏览 2次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次