首页 » 文章 » 文章详细信息
Advances in Meteorology Volume 2019 ,2019-06-19
Climate Change Impacts on Winter Wheat Yield in Northern China
Research Article
Xiu Geng 1 , 2 Fang Wang 1 , 2 Wei Ren 3 Zhixin Hao 1 , 2
Show affiliations
DOI:10.1155/2019/2767018
Received 2019-02-22, accepted for publication 2019-05-19, Published 2019-05-19
PDF
摘要

Exploring the impacts of climate change on agriculture is one of important topics with respect to climate change. We quantitatively examined the impacts of climate change on winter wheat yield in Northern China using the Cobb–Douglas production function. Utilizing time-series data of agricultural production and meteorological observations from 1981 to 2016, the impacts of climatic factors on wheat production were assessed. It was found that the contribution of climatic factors to winter wheat yield per unit area (WYPA) was 0.762–1.921% in absolute terms. Growing season average temperature (GSAT) had a negative impact on WYPA for the period of 1981–2016. A 1% increase in GSAT could lead to a loss of 0.109% of WYPA when the other factors were constant. While growing season precipitation (GSP) had a positive impact on WYPA, as a 1% increase in GSP could result in 0.186% increase in WYPA, other factors kept constant. Then, the impacts on WYPA for the period 2021–2050 under two different emissions scenarios RCP4.5 and RCP8.5 were forecasted. For the whole study area, GSAT is projected to increase 1.37°C under RCP4.5 and 1.54°C under RCP8.5 for the period 2021–2050, which will lower the average WYPA by 1.75% and 1.97%, respectively. GSP is tended to increase by 17.31% under RCP4.5 and 22.22% under RCP8.5 and will give a rise of 3.22% and 4.13% in WYPA. The comprehensive effect of GSAT and GSP will increase WYPA by 1.47% under RCP4.5 and 2.16% under RCP8.5.

授权许可

Copyright © 2019 Xiu Geng et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Zhixin Hao.Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China, cas.cn;College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China, ucas.ac.cn.haozx@igsnrr.ac.cn

推荐引用方式

Xiu Geng,Fang Wang,Wei Ren,Zhixin Hao. Climate Change Impacts on Winter Wheat Yield in Northern China. Advances in Meteorology ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] W. Shi, F. Tao, Z. Zhang. (2013). A review on statistical models for identifying climate contributions to crop yields. Journal of Geographical Sciences.23(3):567-576. DOI: 10.1007/s10584-005-5940-1.
[2] C. Rosenzweig, J. Elliott, D. Deryng. (2014). Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences.111(9):3268-3273. DOI: 10.1007/s10584-005-5940-1.
[3] S. J. Lambert, G. J. Boer. (2001). CMIP1 evaluation and intercomparison of coupled climate models. Climate Dynamics.17(2-3):83-106. DOI: 10.1007/s10584-005-5940-1.
[4] C. Tebaldi, R. Knutti. (2007). The use of the multi-model ensemble in probabilistic climate projections. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.365(1857):2053-2075. DOI: 10.1007/s10584-005-5940-1.
[5] R. Mendelsohn, W. Morrison, M. E. Schlesinger, N. G. Andronova. et al.(2000). Country-specific market impacts of climate change. Climatic Change.45(3-4):553-569. DOI: 10.1007/s10584-005-5940-1.
[6] H. Gitay, W. Easterling, B. Jallow. (2001). Ecosystems and their goods and services. Climate Change 2001: Impacts, Adaptation, and Vulnerability. The Third Assessment Report of the Intergovernmental Panel on Climate Change:235-342. DOI: 10.1007/s10584-005-5940-1.
[7] D. B. Lobell, C. B. Field. (2007). Global scale climate–crop yield relationships and the impacts of recent warming. Environmental Research Letters.2(1). DOI: 10.1007/s10584-005-5940-1.
[8] J. M. Yang, J. Y. Yang, S. Dou, X. M. Yang. et al.(2013). Simulating the effect of long-term fertilization on maize yield and soil C/N dynamics in Northeastern China using DSSAT and CENTURY-based soil model. Nutrient Cycling in Agroecosystems.95(3):287-303. DOI: 10.1007/s10584-005-5940-1.
[9] X. Ma, C. Zhao, H. Tao, J. Zhu. et al.(2018). Projections of actual evapotranspiration under the 1.5°C and 2.0°C global warming scenarios in sandy areas in Northern China. Science of the Total Environment.645(15):1496-1508. DOI: 10.1007/s10584-005-5940-1.
[10] J. Chou, W. Dong, G. Feng. (2011). The methodology of quantitative assess economic output of climate change. Chinese Science Bulletin.56(13):1333-1335. DOI: 10.1007/s10584-005-5940-1.
[11] B. D. Qian, R. D. Jong, T. Huffman, H. Wang. et al.(2016). Projecting yield changes of spring wheat under future climate scenarios on the Canadian Prairies. Theoretical and Applied Climatology.123(3-4):651-669. DOI: 10.1007/s10584-005-5940-1.
[12] J. Chou, W. Dong, D. Ye. (2006). Construction of a novel economy-climate model. Chinese Science Bulletin.51(14):1735-1736. DOI: 10.1007/s10584-005-5940-1.
[13] K. Boomiraj, S. P. Wani, K. K. Garg, P. K. Aggarwal. et al.(2010). Climate change adaptation strategies for agro-ecosystem—a review. Journal of Agrometeorology.12(2):145-160. DOI: 10.1007/s10584-005-5940-1.
[14] I. Fehér, A. F. Fieldsend. (2019). The Potential for Expanding Wheat Production in Kazakhstan. Analysis from a Food Security Perspective. DOI: 10.1007/s10584-005-5940-1.
[15] P. Mitra, M. Selowsky, J. Zalduendo. (2009). Turmoil at Twenty: Recession, Recovery, and Reform in Central and Eastern Europe and the Former Soviet Union. DOI: 10.1007/s10584-005-5940-1.
[16] E. Blanc, W. Schlenker. (2017). The use of panel models in assessments of climate impacts on agriculture. Review of Environmental Economics and Policy.11(2):258-279. DOI: 10.1007/s10584-005-5940-1.
[17] W. Liefert, O. Liefert, G. Vocke, E. Allen. et al.(2010). Former Soviet Union region to play larger role in meeting world wheat needs. Amber Waves.8(2):12-19. DOI: 10.1007/s10584-005-5940-1.
[18] K.-C. Li. (1987). Asymptotic optimality for $C_p, C_L$, cross-validation and generalized cross-validation: discrete index set. The Annals of Statistics.15(3):958-975. DOI: 10.1007/s10584-005-5940-1.
[19] C. J. Willmott. (1982). Some comments on the evaluation of model performance. Bulletin of the American Meteorological Society.63(11):1309-1313. DOI: 10.1007/s10584-005-5940-1.
[20] G. Q. Zhao. (2012). Econometrics. DOI: 10.1007/s10584-005-5940-1.
[21] J. Wilcox, D. Makowski. (2014). A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Research.156(2):180-190. DOI: 10.1007/s10584-005-5940-1.
[22] F. Tao, Z. Zhang. (2010). Adaptation of maize production to climate change in North China Plain: quantify the relative contributions of adaptation options. European Journal of Agronomy.33(2):103-116. DOI: 10.1007/s10584-005-5940-1.
[23] Development Research Center of the State Council. (2012). Research on Modernization of Agriculture with Chinese Characteristics. DOI: 10.1007/s10584-005-5940-1.
[24] S. Asseng, F. Ewert, P. Martre. (2014). Rising temperatures reduce global wheat production. Nature Climate Change.5(2):37-64. DOI: 10.1007/s10584-005-5940-1.
[25] S. Thaler, J. Eitzinger, M. Trnka, M. Dubrovsky. et al.(2012). Impacts of climate change and alternative adaptation options on winter wheat yield and water productivity in a dry climate in Central Europe. Journal of Agricultural Science.150(5):537-555. DOI: 10.1007/s10584-005-5940-1.
[26] D. Xiao, F. Tao, Y. Liu. (2013). Observed changes in winter wheat phenology in the North China Plain for 1981–2009. International Journal of Biometeorology.57(2):275-285. DOI: 10.1007/s10584-005-5940-1.
[27] X. N. Ren. (2012). The Impacts of Climate Change on China’s Grain Production and Trade. DOI: 10.1007/s10584-005-5940-1.
[28] C. Gao, Z. T. Zhang, S. Chen, Q. Liu. et al.(2014). The high-resolution simulation of climate change model under RCP4.5 scenarios in the Huaihe River Basin. Geographical Research.33(3):467-477. DOI: 10.1007/s10584-005-5940-1.
[29] D. B. Lobell, M. B. Burke. (2010). On the use of statistical models to predict crop yield responses to climate change. Agricultural and Forest Meteorology.150(11):1443-1452. DOI: 10.1007/s10584-005-5940-1.
[30] C. Rosenzweig, D. Hillel. (1998). Climate Change and the Global Harvest: Potential Impacts on the Greenhouse Effect on Agriculture. DOI: 10.1007/s10584-005-5940-1.
[31] D. P. van Vuuren, J. Edmonds, M. Kainuma. (2011). The representative concentration pathways: an overview. Climatic Change.109(1-2):5-31. DOI: 10.1007/s10584-005-5940-1.
[32] J. Tack, A. Barkley, L. L. Nalley. (2015). Effect of warming temperatures on US wheat yields. Proceedings of the National Academy of Sciences.112(22):6931-6936. DOI: 10.1007/s10584-005-5940-1.
[33] C. Baker-Austin, J. A. Trinanes, N. G. H. Taylor, R. Hartnell. et al.(2013). Emerging vibrio risk at high latitudes in response to ocean warming. Nature Climate Change.3(1):73-77. DOI: 10.1007/s10584-005-5940-1.
[34] B. Qian, H. Wang, Y. He, J. Liu. et al.(2016). Projecting spring wheat yield changes on the Canadian Prairies: effects of resolutions of a regional climate model and statistical processing. International Journal of Climatology.36(10):3492-3506. DOI: 10.1007/s10584-005-5940-1.
[35] S. B. Jin. (1996). Wheat Science in China. DOI: 10.1007/s10584-005-5940-1.
[36] B. Liu, S. Asseng, C. Müller. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change.6(12):1130-1136. DOI: 10.1007/s10584-005-5940-1.
[37] G. C. Zhao. (2010). Study on Chinese wheat planting regionalization. Journal of Triticeae Crops.30(5):886-895. DOI: 10.1007/s10584-005-5940-1.
[38] Z. Sun, S. F. Jia, A. F. Lv, K. J. Yang. et al.(2015). Impacts of climate change on growth period and planting boundaries of winter wheat in China under RCP4.5 scenario. Earth System Dynamics Discussions.6(2):2181-2210. DOI: 10.1007/s10584-005-5940-1.
[39] W. Schlenker, D. B. Lobell. (2010). Robust negative impacts of climate change on African agriculture. Environmental Research Letters.5(1). DOI: 10.1007/s10584-005-5940-1.
[40] J. Moncrieff, R. Clement, J. Finnigan, T. Meyers. et al.(2004). Averaging, detrending, and filtering of eddy covariance time series. Handbook of Micrometeorology.29:7-31. DOI: 10.1007/s10584-005-5940-1.
[41] S. Hempel, K. Frieler, L. Warszawski, J. Schewe. et al.(2013). A trend-preserving bias correction – the ISI-MIP approach. Earth System Dynamics.4(2):219-236. DOI: 10.1007/s10584-005-5940-1.
[42] Y. Xu, C. H. Xu. (2012). Preliminary assessment of simulations of climate changes over China by CMIP5 multi-models. Atmospheric and Oceanic Science Letters.5(6):489-494. DOI: 10.1007/s10584-005-5940-1.
[43] Y. Ding, G. Ren, Z. Zhao. (2007). Detection, causes and projection of climate change over China: an overview of recent progress. Advances in Atmospheric Sciences.24(6):954-971. DOI: 10.1007/s10584-005-5940-1.
[44] M. Dell, B. F. Jones, B. A. Olken. (2014). What do we learn from the weather? The new climate-economy literature. Journal of Economic Literature.52(3):740-798. DOI: 10.1007/s10584-005-5940-1.
[45] National Bureau of Statistics of China. (2010). China Compendium of Statistics 1949–2008. DOI: 10.1007/s10584-005-5940-1.
[46] B. Smit, O. Pilifosova. (2001). Adaptation to climate change in the context of sustainable development and equity. Climate Change 2001: Impacts, Adaptations and Vulnerability. The Third Assessment Report of the Intergovernmental Panel on Climate Change:879-967. DOI: 10.1007/s10584-005-5940-1.
[47] G. Leng, Q. Tang, S. Rayburg. (2015). Climate change impacts on meteorological, agricultural and hydrological droughts in China. Global and Planetary Change.126:23-34. DOI: 10.1007/s10584-005-5940-1.
[48] C.-C. Chen, B. A. McCarl, D. E. Schimmelpfennig. (2004). Yield variability as influenced by climate: a statistical investigation. Climatic Change.66(1-2):239-261. DOI: 10.1007/s10584-005-5940-1.
[49] S. Barrios, B. Ouattara, E. Strobl. (2008). The impact of climatic change on agricultural production: is it different for Africa?. Food Policy.33(4):287-298. DOI: 10.1007/s10584-005-5940-1.
[50] D. S. G. Thomas, C. Twyman. (2005). Equity and justice in climate change adaptation amongst natural-resource-dependent societies. Global Environmental Change.15(2):115-124. DOI: 10.1007/s10584-005-5940-1.
[51] G. Fischer, M. Shah, F. N. Tubiello, H. van Velhuizen. et al.(2005). Socio-economic and climate change impacts on agriculture: an integrated assessment, 1990–2080. Philosophical Transactions of the Royal Society B: Biological Sciences.360(1463):2067-2083. DOI: 10.1007/s10584-005-5940-1.
[52] X. Zhang, S. Wang, H. Sun, S. Chen. et al.(2013). Contribution of cultivar, fertilizer and weather to yield variation of winter wheat over three decades: a case study in the North China Plain. European Journal of Agronomy.50:52-59. DOI: 10.1007/s10584-005-5940-1.
[53] P. Kurukulasuriya, S. Rosenthal. (2003). Climate Change and Agriculture: A Review of Impacts and Adaptations. DOI: 10.1007/s10584-005-5940-1.
[54] J. Li, S. Inanaga, Z. Li, A. E. Eneji. et al.(2005). Optimizing irrigation scheduling for winter wheat in the North China Plain. Agricultural Water Management.76(1):8-23. DOI: 10.1007/s10584-005-5940-1.
[55] H.-L. Zhang, X. Zhao, X.-G. Yin. (2015). Challenges and adaptations of farming to climate change in the North China Plain. Climatic Change.129(1-2):213-224. DOI: 10.1007/s10584-005-5940-1.
[56] IPCC. (2013). Climate Change 2013: the Physical Scientific Basis. Contribution of Working Group Ι to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. DOI: 10.1007/s10584-005-5940-1.
[57] R. P. Motha, W. Baier. (2005). Impacts of present and future climate change and climate variability on agriculture in the temperate regions: North America. Climatic Change.70(1-2):137-164. DOI: 10.1007/s10584-005-5940-1.
[58] K. Riahi, S. Rao, V. Krey. (2011). RCP 8.5—a scenario of comparatively high greenhouse gas emissions. Climatic Change.109(1-2):33-57. DOI: 10.1007/s10584-005-5940-1.
[59] M. J. Salinger. (2005). Climate variability and change: past, present and future: an overview. Climatic Change.70(1-2):9-29. DOI: 10.1007/s10584-005-5940-1.
[60] J. Elliott, D. Deryng, C. Müller. (2014). Constraints and potentials of future irrigation water availability on agricultural production under climate change. Proceedings of the National Academy of Sciences.111(9):3239-3244. DOI: 10.1007/s10584-005-5940-1.
[61] G. S. Maddala, S. Wu. (1999). A comparative study of unit root tests with panel data and a new simple test. Oxford Bulletin of Economics and Statistics.61(s1):631-652. DOI: 10.1007/s10584-005-5940-1.
[62] Y. Yin, D. Ma, S. Wu, T. Pan. et al.(2015). Projections of aridity and its regional variability over China in the mid-21st century. International Journal of Climatology.35(14):4387-4398. DOI: 10.1007/s10584-005-5940-1.
[63] K. Frieler, S. Lange, F. Piontek. (2017). Assessing the impacts of 1.5°C global warming—simulation protocol of the inter-sectoral impact model intercomparison project (ISIMIP2b). Geoscientific Model Development.10(12):4321-4345. DOI: 10.1007/s10584-005-5940-1.
[64] J. X. Song. (2016). A review of research methods of the effect of climate change on agriculture. Science and Technology for Development.12(6):765-776. DOI: 10.1007/s10584-005-5940-1.
[65] C. Zhao, B. Liu, S. Piao. (2017). Temperature increase reduces global yields of major crops in four independent estimates. Proceedings of the National Academy of Sciences.114(35):9326-9331. DOI: 10.1007/s10584-005-5940-1.
[66] Z. Hao, X. Geng, F. Wang, J. Zheng. et al.(2018). Impacts of climate change on agrometeorological indices at winter wheat overwintering stage in Northern China during 2021–2050. International Journal of Climatology.38(15):5576-5588. DOI: 10.1007/s10584-005-5940-1.
[67] National Bureau of Statistics of China. (2009). China Statistical Year Book 2009. DOI: 10.1007/s10584-005-5940-1.
[68] F. Piontek, C. Müller, T. A. M. Pugh. (2014). Multisectoral climate impact hotspots in a warming world. Proceedings of the National Academy of Sciences.111(9):3233-3238. DOI: 10.1007/s10584-005-5940-1.
[69] F. Tao, S. Zhang, Z. Zhang. (2012). Spatiotemporal changes of wheat phenology in China under the effects of temperature, day length and cultivar thermal characteristics. European Journal of Agronomy.43:201-212. DOI: 10.1007/s10584-005-5940-1.
[70] D. Y. Ding, H. Feng, Y. Zhao, J. Q. He. et al.(2016). Modifying winter wheat sowing date as an adaptation to climate change on the loess plateau. Agronomy Journal.108(1):53-63. DOI: 10.1007/s10584-005-5940-1.
[71] K. D. Subedi, B. L. Ma, A. G. Xue. (2007). Planting date and nitrogen effects on grain yield and protein content of spring wheat. Crop Science.47(1):36-44. DOI: 10.1007/s10584-005-5940-1.
[72] C. Hsiao. (2003). The Analysis of Panel Data. DOI: 10.1007/s10584-005-5940-1.
[73] A. Levin, C.-F. Lin, C.-S. J. Chu. (2002). Unit root tests in panel data: asymptotic and finite-sample properties. Journal of Econometrics.108(1):1-24. DOI: 10.1007/s10584-005-5940-1.
文献评价指标
浏览 2次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次