首页 » 文章 » 文章详细信息
Security and Communication Networks Volume 2019 ,2019-07-03
An Approach Enabling Various Queries on Encrypted Industrial Data Stream
Research Article
Tao Wang 1 , 2 , 3 Bo Yang 1 , 2 Guoyong Qiu 1 Lina Zhang 1 , 4 Yong Yu 1 Yanwei Zhou 1 Juncai Guo 1
Show affiliations
DOI:10.1155/2019/6293970
Received 2019-03-14, accepted for publication 2019-06-11, Published 2019-06-11
PDF
摘要

Massive data are generated and collected by devices in the industrial Internet of Things. Data sources would encrypt the data and send them to the data center through the gateway. For some supervision purpose, the gateway needs to observe the encrypted data stream and label the suspicious data. Instead of decrypting ciphertext at the gateway, which is not efficient, this paper presents a Φ -searchable functional encryption scheme that supports inner product evaluations on encrypted data. Based on this scheme, an approach enabling various queries on the encrypted industrial data stream is proposed. The adaptive security of our proposed underlying functional encryption scheme can be proven under general subgroup decision assumptions, and our scheme has the smaller public key, the smaller secret key, and the smaller ciphertext size compared to the related schemes. In addition, the experimental results show that our proposed scheme is efficient. Especially for the gateway, querying on the encrypted data only needs less than 20ms, which is practical for industrial data stream auditing scenario.

授权许可

Copyright © 2019 Tao Wang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Bo Yang.School of Computer Science, Shaanxi Normal University, Xi’an 710119, China, snnu.edu.cn;State Key Laboratory of Information Security (Institute of Information Engineering, Chinese Academy of Sciences), Beijing 100093, China.byang@snnu.edu.cn

推荐引用方式

Tao Wang,Bo Yang,Guoyong Qiu,Lina Zhang,Yong Yu,Yanwei Zhou,Juncai Guo. An Approach Enabling Various Queries on Encrypted Industrial Data Stream. Security and Communication Networks ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] K. LEE, D. H. LEE. (2018). Two-Input functional encryption for inner products from bilinear maps. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences.E101.A(6):915-928. DOI: 10.1109/JIOT.2019.2904177.
[2] C. Bösch, A. Peter, B. Leenders, H. W. Lim. et al.Distributed searchable symmetric encryption. :330-337. DOI: 10.1109/JIOT.2019.2904177.
[3] A. Shamir. Identity-based cryptosystems and signature schemes. .196:47-53. DOI: 10.1109/JIOT.2019.2904177.
[4] A. Lewko, Y. Rouselakis, B. Waters. (2011). Achieving leakage resilience through dual system encryption. Theory of Cryptography—TCC 2011.6597:70-88. DOI: 10.1109/JIOT.2019.2904177.
[5] J. Zhang, J. Chen, A. Ge. (2017). Shorter decentralized attribute-based encryption via extended dual system groups. Security and Communication Networks.2017-19. DOI: 10.1109/JIOT.2019.2904177.
[6] D. Boneh, E.-J. Goh, K. Nissim. Evaluating 2-DNF formulas on ciphertexts. .3378:325-341. DOI: 10.1109/JIOT.2019.2904177.
[7] D. Boneh, M. Franklin. Identity-based encryption from the weil pairing. .2139:213-229. DOI: 10.1109/JIOT.2019.2904177.
[8] D. Sharma, D. C. Jinwala. (2017). Multiuser searchable encryption with token freshness verification. Security and Communication Networks.2017-16. DOI: 10.1109/JIOT.2019.2904177.
[9] R. Xie, C. He, D. Xie, C. Gao. et al.(2018). A secure ciphertext retrieval scheme against insider kgas for mobile devices in cloud storage. Security and Communication Networks.2018-7. DOI: 10.1109/JIOT.2019.2904177.
[10] M. Zhang, Y. Zhang, Y. Jiang, J. Shen. et al.(2019). Obfuscating eves algorithm and its application in fair electronic transactions in public cloud systems. IEEE Systems Journal. DOI: 10.1109/JIOT.2019.2904177.
[11] A. Lewko, B. Waters. (2010). New techniques for dual system encryption and fully secure HIBE with short ciphertexts. Theory of Cryptography.5978:455-479. DOI: 10.1109/JIOT.2019.2904177.
[12] E. J. Goh. (2003). Secure Indexes. IACR Cryptology ePrint Archive: Report 2003/216. DOI: 10.1109/JIOT.2019.2904177.
[13] R. Curtmola, J. Garay, S. Kamara, R. Ostrovsky. et al.(2011). Searchable symmetric encryption: improved definitions and efficient constructions. Journal of Computer Security.19(5):895-934. DOI: 10.1109/JIOT.2019.2904177.
[14] P. Han, C. Liu, B. Fang. (2016). Revisiting the practicality of search on encrypted data: from the security brokers perspective , scientific programming. Scientific Programming.2016-9. DOI: 10.1109/JIOT.2019.2904177.
[15] B. Lynn. The pairing-based cryptography library (0.5.13). . DOI: 10.1109/JIOT.2019.2904177.
[16] Q. Jiang, J. Ma, C. Yang. (2017). Efficient End-To-End Authentication Protocol for Wearable Health Monitoring Systems. Computers Electrical Engineering.63:182-195. DOI: 10.1109/JIOT.2019.2904177.
[17] X. Li, Y. Zhu, J. Wang, Z. Liu. et al.(2018). On the soundness and security of privacy-preserving SVM for outsourcing data classification. IEEE Transactions on Dependable and Secure Computing.15(5):906-912. DOI: 10.1109/JIOT.2019.2904177.
[18] A. Lewko. (2012). Tools for simulating features of composite order bilinear groups in the prime order setting. Advances in Cryptology—EUROCRYPT 2012.7237:318-335. DOI: 10.1109/JIOT.2019.2904177.
[19] Q. Jiang, X. Huang, N. Zhang, K. Zhang. et al.(2019). Shake to communicate: secure handshake acceleration-based pairing mechanism for wrist worn devices. IEEE Internet of Things Journal. DOI: 10.1109/JIOT.2019.2904177.
[20] S. Garg, C. Gentry, S. Halevi. Candidate indistinguishability obfuscation and functional encryption for all circuits. :40-49. DOI: 10.1109/JIOT.2019.2904177.
[21] N. Attrapadung, B. Libert. Functional encryption for inner product achieving constant-sizeciphertexts with adaptive security or support for negation. .6056:384-402. DOI: 10.1109/JIOT.2019.2904177.
[22] V. Goyal, O. Pandey, A. Sahai, B. Waters. et al.Attribute-based encryption for fine-grained access control of encrypted data. :89-98. DOI: 10.1109/JIOT.2019.2904177.
[23] D. Boneh, B. Waters. Conjunctive, subset, and range queries on encrypted data. .4392:535-554. DOI: 10.1109/JIOT.2019.2904177.
[24] D. Boneh, A. Sahai, B. Waters. (2010). Functional encryption: definitions and challenges. IACR Cryptology ePrint Archive(Report 2010/543). DOI: 10.1109/JIOT.2019.2904177.
[25] D. Boneh, A. Sahai, B. Waters. (2006). Fully collusion resistant traitor tracing with short ciphertexts and private keys. Advances in Cryptology - EUROCRYPT 2006.4004:573-592. DOI: 10.1109/JIOT.2019.2904177.
[26] Z. Wang, Z. Fu, X. Sun. (2018). Semantic contextual search based on conceptual graphs over encrypted cloud. Security and Communication Networks.2018:1-10. DOI: 10.1109/JIOT.2019.2904177.
[27] J. Katz, A. Sahai, B. Waters. (2013). Predicate encryption supporting disjunctions, polynomial equations, and inner products. Journal of Cryptology.26(2):191-224. DOI: 10.1109/JIOT.2019.2904177.
[28] S. Kamara, C. Papamanthou, T. Roeder. Dynamic searchable symmetric encryption. :965-976. DOI: 10.1109/JIOT.2019.2904177.
[29] G. Asharov, M. Naor, G. Segev. earchable symmetric encryption -optimal locality in linear space via two-dimensional balanced allocations. :1101-1114. DOI: 10.1109/JIOT.2019.2904177.
[30] T. Okamoto, K. Takashima. (2012). Adaptively Attribute-Hiding (Hierarchical) Inner Product Encryption. Advances in Cryptology – EUROCRYPT 2012.7237:591-608. DOI: 10.1109/JIOT.2019.2904177.
[31] T. Okamoto, K. Takashima. (2010). Fully secure functional encryption with general relations from the decisional linear assumption. Advances in Cryptology—CRYPTO 2010.6223:191-208. DOI: 10.1109/JIOT.2019.2904177.
[32] A. Sahai, B. Waters. (2004). Fuzzy identity-based encryption. Cryptology ePrint Archive(Report 2004/086). DOI: 10.1109/JIOT.2019.2904177.
[33] B. Waters. (2009). Dual system encryption: realizing fully secure ibe and hibe under simple assumptions. Advances in Cryptology—CRYPTO 2009.5677:619-636. DOI: 10.1109/JIOT.2019.2904177.
[34] D. Boneh, G. Di Crescenzo, R. Ostrovsky, G. Persiano. et al.Public key encryption with keyword search. .3027:506-522. DOI: 10.1109/JIOT.2019.2904177.
[35] D. X. Song, D. A. Wagner, A. Perrig. Practical techniques for searches on encrypted data. :44-55. DOI: 10.1109/JIOT.2019.2904177.
[36] Q. Jiang, Y. Qian, J. Ma, X. Ma. et al.(2019). User centric three-factor authentication protocol for cloud-assisted wearable devices. International Journal of Communication Systems.32(6). DOI: 10.1109/JIOT.2019.2904177.
[37] D. N. Wu, Q. Q. Gan, X. M. Wang. (2018). Verifiable public key encryption with keyword search based on homomorphic encryption in multi-user setting. IEEE Access.6-9. DOI: 10.1109/JIOT.2019.2904177.
[38] Z. Liu, X. Huang, Z. Hu, M. K. Khan. et al.(2017). On emerging family of elliptic curves to secure internet of things: ECC comes of age. IEEE Transactions on Dependable and Secure Computing.14(3):237-248. DOI: 10.1109/JIOT.2019.2904177.
[39] S. Kamara, T. Moataz. (2016). SQL on structurally-encrypted databases. IACR Cryptology ePrint Archive(Report 2016/453). DOI: 10.1109/JIOT.2019.2904177.
文献评价指标
浏览 11次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次