首页 » 文章 » 文章详细信息
Oxidative Medicine and Cellular Longevity Volume 2019 ,2019-07-04
The Impact of High-Fat Diet on Mitochondrial Function, Free Radical Production, and Nitrosative Stress in the Salivary Glands of Wistar Rats
Research Article
Anna Zalewska 1 Dominika Ziembicka 2 Małgorzata Żendzian-Piotrowska 3 Mateusz Maciejczyk 4
Show affiliations
DOI:10.1155/2019/2606120
Received 2019-04-14, accepted for publication 2019-06-16, Published 2019-06-16
PDF
摘要

Oxidative stress plays a crucial role in the salivary gland dysfunction in insulin resistance; however, the cause of increased free radical formation in these conditions is still unknown. Therefore, the aim of the study was to investigate the effect of high-fat diet (HFD) on the mitochondrial respiratory system, prooxidant enzymes, ROS production, and nitrosative/oxidative stress in the submandibular and parotid glands of rats. The experiment was performed on male Wistar rats divided into two groups (n=10): control and HFD. The 8-week feeding of HFD affects glucose metabolism observed as significant increase in plasma glucose and insulin as well as HOMA-IR as compared to the control rats. The activity of mitochondrial Complex I and Complex II+III was significantly decreased in the parotid and submandibular glands of HFD rats. Mitochondrial cytochrome c oxidase (COX) activity and the hydrogen peroxide level were significantly increased in the parotid and submandibular glands of the HFD group as compared to those of the controls. HFD rats also showed significantly lower reduced glutathione (GSH) and reduced : oxidized glutathione (GSH : GSSG) ratio, as well as a higher GSSG level in the parotid glands of HFD rats. The activity of NADPH oxidase, xanthine oxidase, and levels of oxidative/nitrosative stress (malonaldehyde, nitric oxide, nitrotyrosine, and peroxynitrite) and inflammation/apoptosis (interleukin-1β and caspase-3) biomarkers were statistically elevated in the HFD group in comparison to the controls. HFD impairs mitochondrial function in both types of salivary glands by enhancing ROS production, as well as stimulating inflammation and apoptosis. However, free radical production, protein nitration, and lipid peroxidation were more pronounced in the parotid glands of HFD rats.

授权许可

Copyright © 2019 Anna Zalewska et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Anna Zalewska.Department of Conservative Dentistry, Medical University of Bialystok, Poland, umb.edu.pl.azalewska426@gmail.com

推荐引用方式

Anna Zalewska,Dominika Ziembicka,Małgorzata Żendzian-Piotrowska,Mateusz Maciejczyk. The Impact of High-Fat Diet on Mitochondrial Function, Free Radical Production, and Nitrosative Stress in the Salivary Glands of Wistar Rats. Oxidative Medicine and Cellular Longevity ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] E. G. Bligh, W. J. Dyer. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology.37(1):911-917. DOI: 10.1155/2018/6581970.
[2] A. J. M. Janssen, F. J. M. Trijbels, R. C. A. Sengers, J. A. M. Smeitink. et al.(2007). Spectrophotometric assay for complex I of the respiratory chain in tissue samples and cultured fibroblasts. Clinical Chemistry.53(4):729-734. DOI: 10.1155/2018/6581970.
[3] C. Feillet-Coudray, T. Sutra, G. Fouret, J. Ramos. et al.(2009). Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenols: involvement of mitochondrial and NAD(P)H oxidase systems. Free Radical Biology & Medicine.46(5):624-632. DOI: 10.1155/2018/6581970.
[4] F. Q. Schafer, G. R. Buettner. (2001). Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple. Free Radical Biology & Medicine.30(11):1191-1212. DOI: 10.1155/2018/6581970.
[5] N. F. Wiernsperger. (2003). Oxidative stress as a therapeutic target in diabetes: revisiting the controversy. Diabetes & Metabolism.29(6):579-585. DOI: 10.1155/2018/6581970.
[6] C. Bonnard, A. Durand, S. Peyrol, E. Chanseaume. et al.(2008). Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice. The Journal of Clinical Investigation.118(2):789-800. DOI: 10.1155/2018/6581970.
[7] E. Cadenas, K. J. A. Davies. (2000). Mitochondrial free radical generation, oxidative stress, and aging. Free Radical Biology & Medicine.29(3-4):222-230. DOI: 10.1155/2018/6581970.
[8] O. W. Griffith. (1980). Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochemistry.106(1):207-212. DOI: 10.1155/2018/6581970.
[9] F. L. Muller, Y. Liu, H. Van Remmen. (2004). Complex III releases superoxide to both sides of the inner mitochondrial membrane. Journal of Biological Chemistry.279(47):49064-49073. DOI: 10.1155/2018/6581970.
[10] J. F. Turrens, A. Boveris. (1980). Generation of superoxide anion by the NADH dehydrogenase of bovine heart mitochondria. Biochemical Journal.191(2):421-427. DOI: 10.1155/2018/6581970.
[11] M. Brownlee. (2001). Biochemistry and molecular cell biology of diabetic complications. Nature.414(6865):813-820. DOI: 10.1155/2018/6581970.
[12] U. Kołodziej, M. Maciejczyk, W. Niklińska, D. Waszkiel. et al.(2017). Chronic high-protein diet induces oxidative stress and alters the salivary gland function in rats. Archives of Oral Biology.84:6-12. DOI: 10.1155/2018/6581970.
[13] M. Maciejczyk, A. Kossakowska, J. Szulimowska, A. Klimiuk. et al.(2017). Lysosomal exoglycosidase profile and secretory function in the salivary glands of rats with streptozotocin-induced diabetes. Journal Diabetes Research.2017-13. DOI: 10.1155/2018/6581970.
[14] M. Maciejczyk, E. Żebrowska, A. Zalewska, A. Chabowski. et al.(2018). Redox balance, antioxidant defense, and oxidative damage in the hypothalamus and cerebral cortex of rats with high fat diet-induced insulin resistance. Oxidative Medicine and Cellular Longevity.2018-11. DOI: 10.1155/2018/6581970.
[15] P. A. Srere. (1969). [1] Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods in Enzymology.13. DOI: 10.1155/2018/6581970.
[16] M. P. Murphy. (2009). How mitochondria produce reactive oxygen species. Biochemical Journal.417(1):1-13. DOI: 10.1155/2018/6581970.
[17] J. Matczuk, A. Zalewska, B. Łukaszuk, M. Knaś. et al.(2016). Insulin resistance and obesity affect lipid profile in the salivary glands. Journal Diabetes Research.2016-9. DOI: 10.1155/2018/6581970.
[18] D. C. Wharton, A. Tzagoloff. (1967). [45] Cytochrome oxidase from beef heart mitochondria. Methods in Enzymology.10. DOI: 10.1155/2018/6581970.
[19] P. Żukowski, M. Maciejczyk, J. Matczuk, K. Kurek. et al.(2018). Effect of N-acetylcysteine on antioxidant defense, oxidative modification, and salivary gland function in a rat model of insulin resistance. Oxidative Medicine and Cellular Longevity.2018-11. DOI: 10.1155/2018/6581970.
[20] P. Rustin, D. Chretien, T. Bourgeron, B. Gérard. et al.(1994). Biochemical and molecular investigations in respiratory chain deficiencies. Clinica Chimica Acta.228(1):35-51. DOI: 10.1155/2018/6581970.
[21] M. Maciejczyk, J. Matczuk, M. Żendzian-Piotrowska, W. Niklińska. et al.(2018). Eight-week consumption of high-sucrose diet has a pro-oxidant effect and alters the function of the salivary glands of rats. Nutrients.10(10):1530. DOI: 10.1155/2018/6581970.
[22] E. Hatanaka, A. Dermargos, A. E. Hirata, M. A. R. Vinolo. et al.(2013). Oleic, linoleic and linolenic acids increase ROS production by fibroblasts via NADPH oxidase activation. PLoS One.8(4, article e58626). DOI: 10.1155/2018/6581970.
[23] M. Knaś, M. Maciejczyk, A. Zalewska. (2013). Oxidative stress and salivary antioxidants. Dental and Medical Problems.50(4):461-466. DOI: 10.1155/2018/6581970.
[24] J. F. Turrens. (2003). Mitochondrial formation of reactive oxygen species. The Journal of Physiology.552(2):335-344. DOI: 10.1155/2018/6581970.
[25] B. Selles, M. Hugo, M. Trujillo, V. Srivastava. et al.(2012). Hydroperoxide and peroxynitrite reductase activity of poplar thioredoxin-dependent glutathione peroxidase 5: kinetics, catalytic mechanism and oxidative inactivation. Biochemical Journal.442(2):369-380. DOI: 10.1155/2018/6581970.
[26] S. Furukawa, T. Fujita, M. Shimabukuro, M. Iwaki. et al.(2004). Increased oxidative stress in obesity and its impact on metabolic syndrome. The Journal of Clinical Investigation.114(12):1752-1761. DOI: 10.1155/2018/6581970.
[27] E. L. B. Novelli, Y. S. Diniz, C. M. Galhardi, G. M. X. Ebaid. et al.(2007). Anthropometrical parameters and markers of obesity in rats. Laboratory Animals.41(1):111-119. DOI: 10.1155/2018/6581970.
[28] D. Valenti, G. A. Manente, L. Moro, E. Marra. et al.(2011). Deficit of complex I activity in human skin fibroblasts with chromosome 21 trisomy and overproduction of reactive oxygen species by mitochondria: involvement of the cAMP/PKA signalling pathway. Biochemical Journal.435(3):679-688. DOI: 10.1155/2018/6581970.
[29] K. Schröder, K. Wandzioch, I. Helmcke, R. P. Brandes. et al.(2009). Nox4 acts as a switch between differentiation and proliferation in preadipocytes. Arteriosclerosis, Thrombosis, and Vascular Biology.29(2):239-245. DOI: 10.1155/2018/6581970.
[30] G. Solinas, M. Karin. (2010). JNK1 and IKK: molecular links between obesity and metabolic dysfunction. The FASEB Journal.24(8):2596-2611. DOI: 10.1155/2018/6581970.
[31] J. Borys, M. Maciejczyk, B. Antonowicz, A. Krętowski. et al.(2019). Glutathione metabolism, mitochondria activity, and nitrosative stress in patients treated for mandible fractures. Journal of Clinical Medicine.8(1):127. DOI: 10.1155/2018/6581970.
[32] A. Zalewska, M. Knaś, E. Gińdzieńska-Sieśkiewicz, N. Waszkiewicz. et al.(2014). Salivary antioxidants in patients with systemic sclerosis. Journal of Oral Pathology & Medicine.43(1):61-68. DOI: 10.1155/2018/6581970.
[33] I. García-Ruiz, P. Solís-Muñoz, D. Fernández-Moreira, M. Grau. et al.(2014). High-fat diet decreases activity of the oxidative phosphorylation complexes and causes nonalcoholic steatohepatitis in mice. Disease Models & Mechanisms.7(11):1287-1296. DOI: 10.1155/2018/6581970.
[34] X. Li, K. Higashida, T. Kawamura, M. Higuchi. et al.(2016). Alternate-day high-fat diet induces an increase in mitochondrial enzyme activities and protein content in rat skeletal muscle. Nutrients.8(4):203. DOI: 10.1155/2018/6581970.
[35] G. Loschen, L. Flohe, B. Chance. (1971). Respiratory chain linked HO production in pigeon heart mitochondria. FEBS Letters.18(2):261-264. DOI: 10.1155/2018/6581970.
[36] A. L. Orr, C. L. Quinlan, I. V. Perevoshchikova, M. D. Brand. et al.(2012). A refined analysis of superoxide production by mitochondrial -glycerol 3-phosphate dehydrogenase. Journal of Biological Chemistry.287(51):42921-42935. DOI: 10.1155/2018/6581970.
[37] K. K. Griendling, C. A. Minieri, J. D. Ollerenshaw, R. W. Alexander. et al.(1994). Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circulation Research.74(6):1141-1148. DOI: 10.1155/2018/6581970.
[38] N. Prajda, G. Weber. (1975). Malignant transformation-linked imbalance: decreased xanthine oxidase activity in hepatomas. FEBS Letters.59(2):245-249. DOI: 10.1155/2018/6581970.
[39] M. B. Grisham, G. G. Johnson, J. R. Lancaster. (1996). Quantitation of nitrate and nitrite in extracellular fluids. Methods in Enzymology.268:237-246. DOI: 10.1155/2018/6581970.
[40] J. S. Beckman, H. Ischiropoulos, L. Zhu, M. van der Woerd. et al.(1992). Kinetics of superoxide dismutase- and iron-catalyzed nitration of phenolics by peroxynitrite. Archives of Biochemistry and Biophysics.298(2):438-445. DOI: 10.1155/2018/6581970.
[41] S. C. Bondy, S. X. Guo. (1994). Effect of ethanol treatment on indices of cumulative oxidative stress. European Journal of Pharmacology: Environmental Toxicology and Pharmacology.270(4):349-355. DOI: 10.1155/2018/6581970.
[42] A.-R. M. A. Meki, E. E.-D. F. Esmail, A. A. Hussein, H. M. Hassanein. et al.(2004). Caspase-3 and heat shock protein-70 in rat liver treated with aflatoxin B1: effect of melatonin. Toxicon.43(1):93-100. DOI: 10.1155/2018/6581970.
[43] C. E. Ebertz, M. L. Bonfleur, I. M. Bertasso, M. C. Mendes. et al.(2014). Duodenal jejunal bypass attenuates non-alcoholic fatty liver disease in western diet-obese rats. Acta Cirúrgica Brasileira.29(9):609-614. DOI: 10.1155/2018/6581970.
[44] B. Kadenbach, S. Arnold, I. Lee, M. Hüttemann. et al.(2004). The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases. Biochimica et Biophysica Acta (BBA) - Bioenergetics.1655(1-3):400-408. DOI: 10.1155/2018/6581970.
[45] C. de la Cal, A. Lomniczi, C. E. Mohn, A. de Laurentiis. et al.(2006). Decrease in salivary secretion by radiation mediated by nitric oxide and prostaglandins. Neuroimmunomodulation.13(1):19-27. DOI: 10.1155/2018/6581970.
[46] A. Zalewska, M. Knaś, N. Waszkiewicz, D. Waszkiel. et al.(2013). Rheumatoid arthritis patients with xerostomia have reduced production of key salivary constituents. Oral Surgery, Oral Medicine, and Oral Pathology.115(4):483-490. DOI: 10.1155/2018/6581970.
[47] T. Garnol, R. Endlicher, O. Kučera, Z. Drahota. et al.(2014). Impairment of mitochondrial function of rat hepatocytes by high fat diet and oxidative stress. Physiological Research.63(2):271-274. DOI: 10.1155/2018/6581970.
[48] S. M. Bailey, C. C. Cunningham. (1999). Effect of dietary fat on chronic ethanol-induced oxidative stress in hepatocytes. Alcoholism: Clinical and Experimental Research.23(7):1210-1218. DOI: 10.1155/2018/6581970.
[49] A. Zalewska, M. Knaś, M. Żendzian-Piotrowska, N. Waszkiewicz. et al.(2014). Antioxidant profile of salivary glands in high fat diet-induced insulin resistance rats. Oral Diseases.20(6):560-566. DOI: 10.1155/2018/6581970.
[50] H. Feinstein, M. Schramm. (1970). Energy production in rat parotid gland. Relation to enzyme secretion and effects of calcium. European Journal of Biochemistry.13(1):158-163. DOI: 10.1155/2018/6581970.
[51] A. Zalewska, M. Knaś, A. Kuźmiuk, N. Waszkiewicz. et al.(2013). Salivary innate defense system in type 1 diabetes mellitus in children with mixed and permanent dentition. Acta Odontologica Scandinavica.71(6):1493-1500. DOI: 10.1155/2018/6581970.
[52] J. Nicolau, K. T. Sassaki. (1976). Metabolism of carbohydrate in the major salivary glands of rats. Archives of Oral Biology.21(11):659-661. DOI: 10.1155/2018/6581970.
[53] U. Kołodziej, M. Maciejczyk, A. Miąsko, J. Matczuk. et al.(2017). Oxidative modification in the salivary glands of high fat-diet induced insulin resistant rats. Frontiers in Physiology.8:20. DOI: 10.1155/2018/6581970.
[54] M. Zhou, Z. Diwu, N. Panchuk-Voloshina, R. P. Haugland. et al.(1997). A stable nonfluorescent derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: applications in detecting the activity of phagocyte NADPH oxidase and other oxidases. Analytical Biochemistry.253(2):162-168. DOI: 10.1155/2018/6581970.
[55] S. K. Mantena, D. P. Vaughn, K. K. Andringa, H. B. Eccleston. et al.(2009). High fat diet induces dysregulation of hepatic oxygen gradients and mitochondrial function in vivo. Biochemical Journal.417(1):183-193. DOI: 10.1155/2018/6581970.
[56] D. E. Paglia, W. N. Valentine. (1967). Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. The Journal of Laboratory and Clinical Medicine.70(1):158-169. DOI: 10.1155/2018/6581970.
[57] J. A. Buege, S. D. Aust. (1978). [30] Microsomal lipid peroxidation. Methods in Enzymology.52:302-310. DOI: 10.1155/2018/6581970.
[58] C. E. Mize, R. G. Langdon. (1962). Hepatic glutathione reductase. I. Purification and general kinetic properties. Journal of Biological Chemistry.237:1589-1595. DOI: 10.1155/2018/6581970.
文献评价指标
浏览 14次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次