首页 » 文章 » 文章详细信息
Mathematical Problems in Engineering Volume 2019 ,2019-07-01
Optimization Analysis of the Position of Thermometers Buried in Concrete Pouring Block Embedded with Cooling Pipes
Research Article
Yaoying Huang 1 Tong Xie 1 Chunguang Li 2 Xiaohui Yin 1
Show affiliations
DOI:10.1155/2019/5256839
Received 2019-03-19, accepted for publication 2019-06-11, Published 2019-06-11
PDF
摘要

The measured temperature of a concrete pouring block depends strongly on the position of the buried thermometer. Only when the temperature measured by the thermometer accurately reflects the actual temperature of the concrete pouring block do reasonable temperature-control measures become possible. However, little research has been done on how to determine the proper position of thermometers buried in a concrete pouring block embedded with cooling pipes. To address this situation, we develop herein a method to determine the position of thermometers buried in a concrete pouring block. First, we assume that the design temperature-control process line characterizes the average-temperature history of the concrete pouring block. Under this assumption, we calculate the average-temperature history of the concrete pouring block by using the water-pipe-cooling FEM, following which the temperature history of an arbitrary point in the concrete pouring block is obtained by interpolating the shape function. Based on the average-temperature history of the concrete pouring block and the temperature history of the arbitrary point, we build a mathematical model to optimize the buried position of the thermometer and use the optimization algorithm to determine this position. By using this method, we establish finite-element models of concrete prisms with four typical water-pipe spacing cases for concrete-dam engineering and obtain the geometric position of the thermometers by using the optimization algorithm. By burying thermometers at these positions, the measured temperature should better characterize the average-temperature history of the concrete pouring block, which can provide useful information for regulating the temperature of concrete pouring blocks.

授权许可

Copyright © 2019 Yaoying Huang et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Yaoying Huang.College of Hydraulic and Environmental Engineering, China Three Gorges University, Yichang, Hubei 443002, China, ctgu.edu.cn.huangyaoying@sohu.com

推荐引用方式

Yaoying Huang,Tong Xie,Chunguang Li,Xiaohui Yin. Optimization Analysis of the Position of Thermometers Buried in Concrete Pouring Block Embedded with Cooling Pipes. Mathematical Problems in Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] O. C. Zienkiewicz, R. L. Taylor, J. Z. Zhu. (2013). The Finite Element Method: Its Basis and Fundamentals. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[2] X. Liu, C. Zhang, X. Chang, W. Zhou. et al.(2015). Precise simulation analysis of the thermal field in mass concrete with a pipe water cooling system. Applied Thermal Engineering.78(5):449-459. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[3] The Bureau of Reclamation. (2008). The Bureau of Reclamation: History Essays from The Centennial Symposium. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[4] E. Z. Moore, K. D. Murphy, J. M. Nichols. (2013). Optimized sensor placement for damage parameter estimation: experimental results for a cracked plate. Structural Health and Monitoring.12(3):197-206. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[5] J. Liu, H. Wang, Z. Zhang, R. Zhang. et al.(2018). Optimum sensor placement method for cable-stayed bridges based on damage identifiability. Journal of Southwest Jiaotong University.53(1):173-181. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[6] The Bureau of Reclamation. (1949). Cooling of Concrete Dams: Final Reports. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[7] F. L. Quivik. (2013). Cooling mass concrete: Owyhee, Hoover, and building large dams. Engineering History and Heritage.166(4):236-247. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[8] K. Zhu, C. S. Gu, J. C. Qiu. (2016). Determining the optimal placement of sensors on a concrete arch dam using a quantum genetic algorithm. Journal of Sensors.2016-10. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[9] B. F. Zhu. (2003). Equivalent heat conduction equation of pipe cooling in mass concrete considering influence of external temperature. Journal of Hydraulic Engineering(3):49-54. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[10] B. F. Zhu, C. R. Zhang. (2010). Research on Key Safety Technology of High Arch Dam Structure. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[11] B. F. Zhu. (1991). Equivalent equation of heat conduction in mass concrete considering the effect of pipe cooling. Journal of Hydraulic Engineering(3):28-34. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[12] B. F. Zhu. (2009). Progress in Theory and Technology of Concrete Dam. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[13] B. F. Zhu. (2009). Pipe cooling of concrete dam from earlier age with smaller temperature difference and longer time. Water Resources and Hydropower Engineering.40(1):44-50. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[14] B. F. Zhu. (1985). Finite element analysis of the effect of pipe cooling in concrete dams. Journal of Hydraulic Engineering(4):27-36. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[15] Y. Y. Huang, Y. H. Zhou, J. B. Zhou. (2012). Energy analysis of a pipe cooling thermal conduction calculation model. Hydro-Science and Engineering(1):78-82. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[16] T. P. Melhado, M. Hein, L. C. Ruth. The construction of hoover dam: a case study from a builder's perspective. :346-359. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[17] G. X. Zhang, Y. Liu, S. H. Li, B. F. Zhu. et al.(2014). Research and practice of Nine-Three-One temperature control mode. Journal of Hydraulic Engineering.33(2):179-184. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[18] Y. Y. Huang, Y. H. Zhou. (2009). Correlation of conduction calculation model for two different cooling pipes heat. Journal of Yangtze River Scientific Research Institute.26(6):56-59. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[19] B. F. Zhu. (2006). On the feasibility of building high quality arch dams without cracking and the relevant techniques. Journal of Hydraulic Engineering.37(10):1155-1162. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[20] B. F. Zhu. (2012). Thermal Stresses and Temperature Control of Mass Concrete. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[21] Y. Huang, H. Zheng, K. Xia, Y. Zhou. et al.(2012). Study on equivalent heat conduct of concrete using pipe cooling and equivalent time. Journal of Huazhong University of Science and Technology (Natural Science Edition).40(2):45-48. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[22] B. F. Zhu. (1998). Principle and Application of Finite Element Method. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[23] J. Cheng, T. C. Li, X. Liu, L. H. Zhao. et al.(2016). A 3D discrete FEM iterative algorithm for solving the water pipe cooling problems of massive concrete structures. International Journal for Numerical and Analytical Methods in Geomechanics.40(4):487-508. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[24] Z. Wu, J. Li, C. Gu, H. Su. et al.(2007). Review on hidden trouble detection and health diagnosis of hydraulic concrete structures. Science China Technological Sciences.50(S1):34-50. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[25] P. Kripakaran, I. F. Smith. (2009). Configuring and enhancing measurement systems for damage identification. Advanced Engineering Informatics.23(4):424-432. DOI: 10.1016/B978-1-85617-633-0.00001-0.
[26] Y. M. Zhu, Z. Q. Xu, J. R. He. (2003). A calculation method for solving temperature field of mass concrete with cooling pipes. Journal of Yangtze River Scientific Research Institute(2):19-22. DOI: 10.1016/B978-1-85617-633-0.00001-0.
文献评价指标
浏览 10次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次