首页 » 文章 » 文章详细信息
Journal of Spectroscopy Volume 2019 ,2019-07-02
Statistical Analysis of Flame Oscillation Characterization of Oxy-Fuel in Heavy Oil Boiler Using OH Planar Laser-Induced Fluorescence
Research Article
Xin Yu 1 , 2 Zhen Cao 1 , 2 JiangBo Peng 1 , 2 Yang Yu 1 , 2 Guang Chang 1 , 2 Yufei Ma 1 , 2 XiaoHui Li 1 , 2 Chaobo Yang 1 , 2 ZhiQiang Wang 3
Show affiliations
DOI:10.1155/2019/7085232
Received 2019-03-20, accepted for publication 2019-06-12, Published 2019-06-12
PDF
摘要

The present work investigated the flame structures and oscillations of oxy-fuel combustions in a heavy oil boiler using OH planar laser-induced fluorescence imaging. Combustion instabilities, such as flame oscillation and combustion fluctuation, can assess the performance of an industrial burner in the boiler. The peak position variation in OH concentration was associated with the change of the reaction zone that corresponded with the fluctuation of the heat-release zone in the combustion chamber, which provides a valuable reference for the design of the combustion chamber. The experimental results suggest that the phenomenon of stratified flame combustion is related to the characteristic of flame oscillation. The substitution of N2 with CO2 will not significantly influence the flame oscillation frequency but increases the number of flame surface. As O2 concentration increased in the O2/CO2 atmosphere, the phenomenon of stratified flame combustion disappeared, and the flame presented an island-like structure. The bimodal oscillation of the combustion center was demonstrated by means of the probability density method; CO2 played a role in the extension of the combustion center. The combustion fluctuation of inner regions was quantitatively described; CO2 could maintain interregional stabilization to some extent. Compared with traditional measurement methods, PLIF technology has great advantages in evaluating burner performance and optimizing the design of the combustion chamber.

授权许可

Copyright © 2019 Xin Yu et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

JiangBo Peng.National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin 150080, China, hit.edu.cn;Institute of Opt-Electronics, Harbin Institute of Technology, Harbin 150080, China, hit.edu.cn.pengjiangbo_2004@126.com

推荐引用方式

Xin Yu,Zhen Cao,JiangBo Peng,Yang Yu,Guang Chang,Yufei Ma,XiaoHui Li,Chaobo Yang,ZhiQiang Wang. Statistical Analysis of Flame Oscillation Characterization of Oxy-Fuel in Heavy Oil Boiler Using OH Planar Laser-Induced Fluorescence. Journal of Spectroscopy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] K. H. Yu, A. Trouvé, J. W. Daily. (1991). Low-frequency pressure oscillations in a model ramjet combustor. Journal of Fluid Mechanics.232:47-72. DOI: 10.1016/j.petrol.2016.11.025.
[2] J.-Y. Choi, F. Ma, V. Yang. (2005). Combustion oscillations in a scramjet engine combustor with transverse fuel injection. Proceedings of the Combustion Institute.30(2):2851-2858. DOI: 10.1016/j.petrol.2016.11.025.
[3] G.-N. Li, H. Zhou, K.-F. Cen. (2008). Emission characteristics and combustion instabilities in an oxy-fuel swirl-stabilized combustor. Journal of Zhejiang University-Science A.9(11):1582-1589. DOI: 10.1016/j.petrol.2016.11.025.
[4] Z. S. Li, B. Li, Z. W. Sun, X. S. Bai. et al.(2010). Turbulence and combustion interaction: high resolution local flame front structure visualization using simultaneous single-shot PLIF imaging of CH, OH, and CHO in a piloted premixed jet flame. Combustion and Flame.157(6):1087-1096. DOI: 10.1016/j.petrol.2016.11.025.
[5] Z.-G. Wang, M.-B. Sun, H.-B. Wang, J.-F. Yu. et al.(2015). Mixing-related low frequency oscillation of combustion in an ethylene-fueled supersonic combustor. Proceedings of the Combustion Institute.35(2):2137-2144. DOI: 10.1016/j.petrol.2016.11.025.
[6] C. Külsheimer, H. Büchner. (2002). Combustion dynamics of turbulent swirling flames. Combust and Flame.131(1-2):70-84. DOI: 10.1016/j.petrol.2016.11.025.
[7] M. B. Sun, C. Gong, S. P. Zhang, J. H. Liang. et al.(2012). Spark ignition process in a scramjet combustor fueled by hydrogen and equipped with multi-cavities at Mach 4 flight condition. Experimental Thermal and Fluid Science.43:90-96. DOI: 10.1016/j.petrol.2016.11.025.
[8] Y. Xie, J. Wang, M. Zhang, J. Gong. et al.(2013). Experimental and numerical study on laminar flame characteristics of methane oxy-fuel mixtures highly diluted with CO. Energy & Fuels.27(10):6231-6237. DOI: 10.1016/j.petrol.2016.11.025.
[9] F. Liu, H. Guo, G. J. Smallwood. (2003). The chemical effect of CO replacement of N in air on the burning velocity of CH and H premixed flames. Combustion and Flame.133(4):495-497. DOI: 10.1016/j.petrol.2016.11.025.
[10] I. G. Shepherd, R. K. Cheng. (2001). The burning rate of premixed flames in moderate and intense turbulence. Combustion and Flame.127(3):2066-2075. DOI: 10.1016/j.petrol.2016.11.025.
[11] K.-C. Lin, K. Jackson, R. Behdadnia, T. A. Jackson. et al.(2010). Acoustic characterization of an ethylene-fueled scramjet combustor with a cavity flameholder. Journal of Propulsion and Power.26(6):1161-1170. DOI: 10.1016/j.petrol.2016.11.025.
[12] M. Bruchhausen, F. Guillard, F. Lemoine. (2005). Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF). Experiments in Fluids.38(1):123-131. DOI: 10.1016/j.petrol.2016.11.025.
[13] J. Kiefer, Z. S. Li, J. Zetterberg, X. S. Bai. et al.(2008). Investigation of local flame structures and statistics in partially premixed turbulent jet flames using simultaneous single-shot CH and OH planar laser-induced fluorescence imaging. Combustion and Flame.154(4):802-818. DOI: 10.1016/j.petrol.2016.11.025.
[14] M. C. Lee, S. B. Seo, J. Yoon, M. Kim. et al.(2012). Experimental study on the effect of N, CO, and steam dilution on the combustion performance of H and CO synthetic gas in an industrial gas turbine. Fuel.102:431-438. DOI: 10.1016/j.petrol.2016.11.025.
[15] M. Versluis, N. Georgiev, L. Martinsson, M. Aldén. et al.(1997). 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. Applied Physics B: Lasers and Optics.65(3):411-417. DOI: 10.1016/j.petrol.2016.11.025.
[16] P. Glarborg, L. L. B. Bentzen. (2008). Chemical effects of a high CO concentration in oxy-fuel combustion of methane. Energy & Fuels.22(1):291-296. DOI: 10.1016/j.petrol.2016.11.025.
[17] M.-B. Sun, H. Geng, J.-H. Liang, Z.-G. Wang. et al.(2008). Flame characteristics in supersonic combustor with hydrogen injection upstream of cavity flameholder. Journal of Propulsion and Power.24(4):688-696. DOI: 10.1016/j.petrol.2016.11.025.
[18] F. Carrasco-Maldonado, R. Spörl, K. Fleiger, V. Hoenig. et al.(2016). Oxy-fuel combustion technology for cement production—state of the art research and technology development. International Journal of Greenhouse Gas Control.45:189-199. DOI: 10.1016/j.petrol.2016.11.025.
[19] M. V. Gil, J. Riaza, L. Álvarez, C. Pevida. et al.(2012). Oxy-fuel combustion kinetics and morphology of coal chars obtained in N and CO atmospheres in an entrained flow reactor. Applied Energy.91(1):67-74. DOI: 10.1016/j.petrol.2016.11.025.
[20] J. H. Frank, P. M. Kalt, R. W. Bilger. (1999). Measurements of conditional velocities in turbulent premixed flames by simultaneous OH PLIF and PIV. Combustion and Flame.116(1-2):220-232. DOI: 10.1016/j.petrol.2016.11.025.
[21] Z. Wang, M. Liu, X. Cheng, Y. He. et al.(2017). Experimental study on oxy-fuel combustion of heavy oil. International Journal of Hydrogen Energy.42(31):20306-20315. DOI: 10.1016/j.petrol.2016.11.025.
[22] M. Juddoo, A. R. Masri. (2011). High-speed OH-PLIF imaging of extinction and re-ignition in non-premixed flames with various levels of oxygenation. Combustion and Flame.158(5):902-914. DOI: 10.1016/j.petrol.2016.11.025.
[23] J. Peng, Z. Cao, X. Yu, Y. Yu. et al.(2018). Investigation of flame evolution in heavy oil boiler bench using high-speed planar laser-induced fluorescence imaging. Applied Sciences.8(9):1691-1701. DOI: 10.1016/j.petrol.2016.11.025.
[24] M. Dong, S. Ma, Q. Liu. (2009). Enhanced heavy oil recovery through interfacial instability: a study of chemical flooding for Brintnell heavy oil. Fuel.88(6):1049-1056. DOI: 10.1016/j.petrol.2016.11.025.
[25] H. Wang, Z. Wang, M. Sun, H. Wu. et al.(2013). Combustion modes of hydrogen jet combustion in a cavity-based supersonic combustor. International Journal of Hydrogen Energy.38(27):12078-12089. DOI: 10.1016/j.petrol.2016.11.025.
[26] Q. Zhang, H. Huang, L. Zheng, J. Qin. et al.(2007). Secondary hydrocarbon generation potential from heavy oil, oil sand and solid bitumen during the artificial maturation. Organic Geochemistry.38(12):2024-2035. DOI: 10.1016/j.petrol.2016.11.025.
[27] C. Yang, J. Peng, X. Yu. (2017). Continuous 100 Hz planar laser-induced fluorescence applied to the study of combustion processes. Spectroscopy Letters.50(5):265-269. DOI: 10.1016/j.petrol.2016.11.025.
[28] F. J. Hein. (2017). Geology of bitumen and heavy oil: an overview. Journal of Petroleum Science and Engineering.154:551-563. DOI: 10.1016/j.petrol.2016.11.025.
[29] H. Wang, M. Sun, N. Qin, H. Wu. et al.(2013). Characteristics of oscillations in supersonic open cavity flows. Flow, Turbulence and Combustion.90(1):121-142. DOI: 10.1016/j.petrol.2016.11.025.
[30] W. Huang, W.-D. Liu, S.-B. Li, Z.-X. Xia. et al.(2012). Influences of the turbulence model and the slot width on the transverse slot injection flow field in supersonic flows. Acta Astronautica.73:1-9. DOI: 10.1016/j.petrol.2016.11.025.
文献评价指标
浏览 1次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次