首页 » 文章 » 文章详细信息
Disease Markers Volume 2019 ,2019-07-01
Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer
Research Article
Wentao Su 1 , 2 Hao Yu 1 Lei Jiang 1 , 2 Wenwen Chen 1 , 2 Hongjing Li 3 Jianhua Qin 1 , 2 , 4 , 5
Show affiliations
DOI:10.1155/2019/8945974
Received 2019-02-21, accepted for publication 2019-04-08, Published 2019-04-08
PDF
摘要

Integrated device with high purity for circulating tumor cell (CTC) identification has been regarded as a key goal to make CTC analysis a “bench-to-bedside” technology. Here, we have developed a novel integrated microfluidic device that can enrich and identify the CTCs from the blood of patients with colorectal cancer. To enrich CTCs from whole blood, microfabricated trapping chambers were included in the miniaturized device, allowing for the isolation of tumor cells based on differences in size and deformability between tumor and normal blood cells. Microvalves were also introduced sequentially in the device, enabling automatic CTC enrichment as well as immunostaining reagent delivery. Under optimized conditions, the whole blood spiked with caco-2 cells passing through the microfluidic device after leukocyte depletion and approximately 73% of caco-2 cells were identified by epithelial cell adhesion molecule (EpCAM) staining. In clinical samples, CTCs were detectable from all patients with advanced colorectal cancer within 3 h. In contrast, the number of CTCs captured on the device from the blood of healthy donors was significantly lower than that from the patients, suggesting the utilization of the integrated device for further molecular analyses of CTCs.

授权许可

Copyright © 2019 Wentao Su et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Jianhua Qin.Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China, cas.cn;University of Chinese Academy of Sciences, Beijing, China, ucas.ac.cn;CAS Centre for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China, cas.cn;Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China, cas.cn.jhqin@dicp.ac.cn

推荐引用方式

Wentao Su,Hao Yu,Lei Jiang,Wenwen Chen,Hongjing Li,Jianhua Qin. Integrated Microfluidic Device for Enrichment and Identification of Circulating Tumor Cells from the Blood of Patients with Colorectal Cancer. Disease Markers ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] M. Cristofanilli, D. F. Hayes, G. T. Budd, M. J. Ellis. et al.(2005). Circulating tumor cells: a novel prognostic factor for newly diagnosed metastatic breast cancer. Journal of Clinical Oncology.23(7):1420-1430. DOI: 10.1038/84635.
[2] E. A. Punnoose, S. K. Atwal, J. M. Spoerke, H. Savage. et al.(2010). Molecular biomarker analyses using circulating tumor cells. Plos One.5(9):e12517. DOI: 10.1038/84635.
[3] M. E. Warkiani, G. Guan, K. B. Luan, W. C. Lee. et al.(2014). Slanted spiral microfluidics for the ultra-fast, label-free isolation of circulating tumor cells. Lab on a Chip.14(1):128-137. DOI: 10.1038/84635.
[4] P. Li, Z. S. Stratton, M. Dao, J. Ritz. et al.(2013). Probing circulating tumor cells in microfluidics. Lab on a Chip.13(4):602-609. DOI: 10.1038/84635.
[5] M. Cristofanilli. (2006). Circulating tumor cells, disease progression, and survival in metastatic breast cancer. Seminars in Oncology.33:9-14. DOI: 10.1038/84635.
[6] X. Chen, C. Xue, L. Zhang, G. Hu. et al.(2014). Inertial migration of deformable droplets in a microchannel. Physics of Fluids.26(11):112003. DOI: 10.1038/84635.
[7] S. L. Stott, C.-H. Hsu, D. I. Tsukrov, M. Yu. et al.(2010). Isolation of circulating tumor cells using a microvortex-generating herringbone-chip. Proceedings of the National Academy of Sciences of the United States of America.107(43):18392-18397. DOI: 10.1038/84635.
[8] J. F. Linnekamp, X. Wang, J. P. Medema, L. Vermeulen. et al.(2015). Colorectal cancer heterogeneity and targeted therapy: a case for molecular disease subtypes. Cancer Research.75(2):245-249. DOI: 10.1038/84635.
[9] D. Marrinucci, K. Bethel, A. Kolatkar, M. S. Luttgen. et al.(2012). Fluid biopsy in patients with metastatic prostate, pancreatic and breast cancers. Physical Biology.9(1):016003. DOI: 10.1038/84635.
[10] K. Pantel, R. H. Brakenhoff, B. Brandt. (2008). Detection, clinical relevance and specific biological properties of disseminating tumour cells. Nature Reviews Cancer.8(5):329-340. DOI: 10.1038/84635.
[11] P. Baptista, E. Pereira, P. Eaton, G. Doria. et al.(2008). Gold nanoparticles for the development of clinical diagnosis methods. Analytical and Bioanalytical Chemistry.391(3):943-950. DOI: 10.1038/84635.
[12] V. Hofman, E. Long, M. Ilie, C. Bonnetaud. et al.(2012). Morphological analysis of circulating tumour cells in patients undergoing surgery for non-small cell lung carcinoma using the isolation by size of epithelial tumour cell (ISET) method. Cytopathology.23(1):30-38. DOI: 10.1038/84635.
[13] M. Zhao, P. G. Schiro, J. S. Kuo, K. M. Koehler. et al.(2013). An automated high-throughput counting method for screening circulating tumor cells in peripheral blood. Analytical Chemistry.85(4):2465-2471. DOI: 10.1038/84635.
[14] P. Zuo, X. Li, D. C. Dominguez, B. C. Ye. et al.(2013). A PDMS/paper/glass hybrid microfluidic biochip integrated with aptamer-functionalized graphene oxide nano-biosensors for one-step multiplexed pathogen detection. Lab on a Chip.13(19):3921-3928. DOI: 10.1038/84635.
[15] S. A. Stacker, C. Caesar, M. E. Baldwin, G. E. Thornton. et al.(2001). VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nature Medicine.7(2):186-191. DOI: 10.1038/84635.
[16] S. Nagrath, L. V. Sequist, S. Maheswaran, D. W. Bell. et al.(2007). Isolation of rare circulating tumour cells in cancer patients by microchip technology. Nature.450(7173):1235-1239. DOI: 10.1038/84635.
[17] W. Chen, R. Zheng, P. D. Baade, S. Zhang. et al.(2016). Cancer statistics in China, 2015. Ca-a Cancer Journal for Clinicians.66(2):115-132. DOI: 10.1038/84635.
[18] Z. Zhang, S. Nagrath. (2013). Microfluidics and cancer: are we there yet?. Biomedical Microdevices.15(4):595-609. DOI: 10.1038/84635.
[19] P. Li, Z. Mao, Z. Peng, L. Zhou. et al.(2015). Acoustic separation of circulating tumor cells. Proceedings of the National Academy of Sciences of the United States of America.112(16):4970-4975. DOI: 10.1038/84635.
[20] M. Zhao, W. C. Nelson, B. Wei, P. G. Schiro. et al.(2013). New generation of ensemble-decision aliquot ranking based on simplified microfluidic components for large-capacity trapping of circulating tumor cells. Analytical Chemistry.85(20):9671-9677. DOI: 10.1038/84635.
[21] M. Hosokawa, T. Hayata, Y. Fukuda, A. Arakaki. et al.(2010). Size-selective microcavity array for rapid and efficient detection of circulating tumor cells. Analytical Chemistry.82(15):6629-6635. DOI: 10.1038/84635.
[22] S. Zheng, H. Lin, J.-Q. Liu, M. Balic. et al.(2007). Membrane microfilter device for selective capture, electrolysis and genomic analysis of human circulating tumor cells. Journal of Chromatography A.1162(2):154-161. DOI: 10.1038/84635.
[23] Y. Dong, A. M. Skelley, K. D. Merdek, K. M. Sprott. et al.(2013). Microfluidics and circulating tumor cells. Journal of Molecular Diagnostics.15(2):149-157. DOI: 10.1038/84635.
[24] V. Souza e Silva, L. Chinen, E. Abdallah, A. Damascena. et al.(2016). Early detection of poor outcome in patients with metastatic colorectal cancer: tumor kinetics evaluated by circulating tumor cells. Oncotargets and Therapy.Volume 9:7503-7513. DOI: 10.1038/84635.
[25] J. Sun, Y. Gao, R. J. Isaacs, K. C. Boelte. et al.(2012). Simultaneous on-chip DC dielectrophoretic cell separation and quantitative separation performance characterization. Analytical Chemistry.84(4):2017-2024. DOI: 10.1038/84635.
[26] B. Li, L. Jiang, H. Xie, Y. Gao. et al.(2009). Development of micropump-actuated negative pressure pinched injection for parallel electrophoresis on array microfluidic chip. Electrophoresis.30(17):3053-3057. DOI: 10.1038/84635.
[27] S. Riethdorf, H. Fritsche, V. Muller, T. Rau. et al.(2007). Detection of circulating tumor cells in peripheral blood of patients with metastatic breast cancer: a validation study of the CellSearch system. Clinical Cancer Research.13(3):920-928. DOI: 10.1038/84635.
[28] V. Hofman, C. Bonnetaud, M. I. Ilie, P. Vielh. et al.(2011). Preoperative circulating tumor cell detection using the isolation by size of epithelial tumor cell method for patients with lung cancer is a new prognostic biomarker. Clinical Cancer Research.17(4):827-835. DOI: 10.1038/84635.
[29] X. Huang, J. Tang, L. Hu, R. Bian. et al.(2019). Arrayed microfluidic chip for detection of circulating tumor cells and evaluation of drug potency. Analytical Biochemistry.564-565:64-71. DOI: 10.1038/84635.
[30] M. Mego, M. Mego, M. Mego, S. Mani. et al.(2009). Circulating tumor cells (CTCs) and epithelial mesenchymal transition (EMT) in breast cancer: describing the heterogeneity of microscopic disease. Cancer Research.69:3011. DOI: 10.1038/84635.
[31] M. G. Lee, J. H. Shin, C. Y. Bae, S. Choi. et al.(2013). Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress. Analytical Chemistry.85(13):6213-6218. DOI: 10.1038/84635.
[32] J. P. Thiery. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer.2(6):442-454. DOI: 10.1038/84635.
[33] C. Liu, G. Hu, X. Jiang, J. Sun. et al.(2015). Inertial focusing of spherical particles in rectangular microchannels over a wide range of Reynolds numbers. Lab on a Chip.15(4):1168-1177. DOI: 10.1038/84635.
[34] V. J. Hofman, M. I. Ilie, C. Bonnetaud, E. Selva. et al.(2011). Cytopathologic detection of circulating tumor cells using the isolation by size of epithelial tumor cell method promises and pitfalls. American Journal of Clinical Pathology.135(1):146-156. DOI: 10.1038/84635.
[35] M. Hosokawa, T. Yoshikawa, R. Negishi, T. Yoshino. et al.(2013). Microcavity array system for size-based enrichment of circulating tumor cells from the blood of patients with small-cell lung cancer. Analytical Chemistry.85(12):5692-5698. DOI: 10.1038/84635.
文献评价指标
浏览 12次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次