首页 » 文章 » 文章详细信息
Advances in Civil Engineering Volume 2019 ,2019-07-02
Quantifying Repeatability Reproducibility Sources of Error and Capacity of a Measurement: Demonstrated Using Laboratory Soil Plasticity Tests
Research Article
Cheng Li 1 , 2 Jeramy C. Ashlock 3 Xuhao Wang 1 , 2
Show affiliations
DOI:10.1155/2019/4539549
Received 2019-04-19, accepted for publication 2019-06-10, Published 2019-06-10
PDF
摘要

The repeatability, reproducibility, and sources of error inherent in a given measurement are important considerations for potential users. To quantify errors arising from a single operator or multiple laboratories, most testing standards uses a one-way analysis of variance- (ANOVA-) based method, which utilizes a simple standard deviation across all measurements. However, this method does not allow users to quantify the sources of error and capacity (i.e., the precision to tolerance ratio). In this study, an innovative two-way ANOVA-based analysis method is selected to quantify the relative contributions of different sources of error and determine whether a measurement can be used to check conformance of a measured characteristic to engineering specifications. In this study, the standardized Atterberg limits tests, fall-cone device Atterberg limits tests, and bar linear shrinkage tests widely used for determining the soil plasticity were selected for evaluation and demonstration. Comparisons between results of the various testing methods are presented, and the error sources contributing to the overall variations between tests are discussed. Based on the findings of this study, the authors suggest use of two-way ANOVA-based R&R analysis to quantify the sources of measurement error and capacity and also recommend using the fall cone device and ASTM standardized thread rolling device for determining liquid and plastic limits of soils, respectively.

授权许可

Copyright © 2019 Cheng Li et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

Xuhao Wang.School of Highway, Chang’an University, Xi’an, Shanxi Province 710064, China, chd.edu.cn;Research and Development Center of Transport Industry of Technologies, Materials and Equipment of Highway Construction and Maintenance, Gansu Road & Bridge Construction Group, China, gslq.com.wangxh@chd.edu.cn

推荐引用方式

Cheng Li,Jeramy C. Ashlock,Xuhao Wang. Quantifying Repeatability Reproducibility Sources of Error and Capacity of a Measurement: Demonstrated Using Laboratory Soil Plasticity Tests. Advances in Civil Engineering ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] R. Belviso, S. Ciampoli, V. Cotecchia, A. Federico. et al.(1985). Use of the cone penetrometer to determine consistency limits. Ground Engineering.18(5):21-22. DOI: 10.1007/s12205-017-0822-4.
[2] ASTM E691-15. (2015). Standard Practice for Conducting an Interlaboratory Study to Determine the Precision of a Test Method, Annual Book of ASTM Standards. DOI: 10.1007/s12205-017-0822-4.
[3] K. L. Bergeson, A. M. Wahbeh. (1990). Development of an Economic Dust Palliative for Limestone Surfaced Secondary Roads, Project HR-297. DOI: 10.1007/s12205-017-0822-4.
[4] P. Paige-Green, D. Ventura. The bar linear shrinkage test–more useful than we think. :379-388. DOI: 10.1007/s12205-017-0822-4.
[5] S. B. Vardeman, J. M. Jobe. (1998). Statistical Quality Assurance Methods for Engineers. DOI: 10.1007/s12205-017-0822-4.
[6] C. Li, J. C. Ashlock, D. J. White, P. K. R. Vennapusa. et al.(2019). Mechanistic-based comparisons of stabilised base and granular surface layers of low-volume roads. International Journal of Pavement Engineering.20(1):112-124. DOI: 10.1007/s12205-017-0822-4.
[7] V. U. Dragoni, N. Prosperini, G. Vinti. (2008). Some observations on the procedures for the determination of the liquid limit: an application on plio-pleistocenic clayey soils from Umbria region (Italy). Italian Journal of Engineering Geology and Environment.1:185-197. DOI: 10.1007/s12205-017-0822-4.
[8] L. Di Matteo. (2012). Liquid limit of low- to medium-plasticity soils: comparison between casagrande cup and cone penetrometer test. Bulletin of Engineering Geology and the Environment.71(1):79-85. DOI: 10.1007/s12205-017-0822-4.
[9] C. Li, J. C. Ashlock, S. Lin, P. K. R. Vennapusa. et al.(2018). In situ modulus reduction characteristics of stabilized pavement foundations by multichannel analysis of surface waves and falling weight deflectometer tests. Construction and Building Materials.188:809-819. DOI: 10.1007/s12205-017-0822-4.
[10] P. T. Sherwood, M. D. Ryley. (1970). An investigation of a cone-penetrometer method for the determination of the liquid limit. Géotechnique.20(2):203-208. DOI: 10.1007/s12205-017-0822-4.
[11] L. Fojtová, M. Marschalko, R. Franeková, L. Kovář. et al.(2009). Study of compatibility of methods for liquid limit measurement according to Czech state standard and newly adopted European standard. GeoScience Engineering.55(1):55-68. DOI: 10.1007/s12205-017-0822-4.
[12] L. R. Sampson, D. F. C. Ventura, D. K. Kalombo. (1992). Linear Shrinkage Test: Justification for Its Reintroduction as a Standard South African Test Method. DOI: 10.1007/s12205-017-0822-4.
[13] C. Li, J. C. Ashlock, B. Cetin, C. T. Jahren. et al.(2018). Performance-based design method for gradation and plasticity of granular road surface materials. Transportation Research Record: Journal of the Transportation Research Board.2672(52):216-225. DOI: 10.1007/s12205-017-0822-4.
[14] BS 1377-2. (1990). Methods of Test for Soils for Civil Engineering Purposes, Part 2. DOI: 10.1007/s12205-017-0822-4.
[15] B. C. O’Kelly, P. J. Vardanega, S. K. Haigh. (2018). Use of fall cones to determine Atterberg limits: a review. Géotechnique.68(10):843-856. DOI: 10.1007/s12205-017-0822-4.
[16] ASTM D4318-10. (2013). Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. DOI: 10.1007/s12205-017-0822-4.
[17] S. K. Haigh. (2012). Mechanics of the casagrande liquid limit test. Canadian Geotechnical Journal.49(9):1015-1023. DOI: 10.1007/s12205-017-0822-4.
[18] Y. Wasti, M. H. Bezirci. (1986). Determination of the consistency limits of soils by the fall cone test. Canadian Geotechnical Journal.23(2):241-246. DOI: 10.1007/s12205-017-0822-4.
[19] G. F. Sowers, A. Vesić, M. Grandolfi. (1960). Penetration tests for liquid limit. Papers on Soils 1959 Meetings:216-226. DOI: 10.1007/s12205-017-0822-4.
[20] J. Li, D. J. White, W. R. Stephenson, C. Li. et al.(2019). Considerations for laboratory resilient modulus testing of unbound pavement base materials. Construction and Building Materials.195:515-523. DOI: 10.1007/s12205-017-0822-4.
[21] M. Özer. (2009). Comparison of liquid limit values determined using the hard and soft base casagrande apparatus and the cone penetrometer. Bulletin of Engineering Geology and the Environment.68(3):289-296. DOI: 10.1007/s12205-017-0822-4.
[22] C. P. Wroth, D. M. Wood. (1978). The correlation of index properties with some basic engineering properties of soils. Canadian Geotechnical Journal.15(2):137-145. DOI: 10.1007/s12205-017-0822-4.
[23] A. W. Skempton, R. D. Northey. (1952). The sensitivity of clays. Géotechnique.3(1):30-53. DOI: 10.1007/s12205-017-0822-4.
[24] E. Bauer. (1959). History and development of the Atterberg limits tests. Papers on Soils 1959 Meetings:160-167. DOI: 10.1007/s12205-017-0822-4.
[25] S. Hansbo. (1957). A New Approach to the Determination of the Shear Strength of Clay by the Fall-Cone Test. DOI: 10.1007/s12205-017-0822-4.
[26] ASTM E177-13. (2013). Standard Practice for Use of the Terms Precision and Bias in ASTM Test Methods, Annual Book of ASTM Standards. DOI: 10.1007/s12205-017-0822-4.
[27] A. Casagrande. (1958). Notes on the design of the liquid limit device. Géotechnique.8(2):84-91. DOI: 10.1007/s12205-017-0822-4.
[28] J. Kodikara, H. N. Seneviratne, C. V. Wijayakulasooryia. (2006). Discussion of “using a small ring and a fall-cone to determine the plastic limit” by Tao-Wei Feng. Journal of Geotechnical and Geoenvironmental engineering.132(2):276-278. DOI: 10.1007/s12205-017-0822-4.
[29] G. Spagnoli. (2012). Comparison between casagrande and drop-cone methods to calculate liquid limit for pure clay. Canadian Journal of Soil Science.92(6):859-864. DOI: 10.1007/s12205-017-0822-4.
[30] F. E. Satterthwaite. (1946). An approximate distribution of estimates of variance components. Biometrics Bulletin.2(6):110-114. DOI: 10.1007/s12205-017-0822-4.
[31] A. Atterberg. (1911). Uber Die Physikalische Bodenuntei Suchung and Uber Die Plastizitat Der Tone. Internationale Mitteilungenfiir Bodenkunde.1. DOI: 10.1007/s12205-017-0822-4.
[32] Y. Li, Y. Yang, H.-S. Yu, G. Roberts. et al.(2018). Principal stress rotation under bidirectional simple shear loadings. KSCE Journal of Civil Engineering.22(5):1651-1660. DOI: 10.1007/s12205-017-0822-4.
文献评价指标
浏览 2次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次