首页 » 文章 » 文章详细信息
Advances in Astronomy Volume 2019 ,2019-07-01
Several Geological Issues of Schrödinger Basin Exposed by CE-2 CELMS Data
Research Article
Z. G. Meng 1 , 2 , 3 H. H. Wang 1 Y. C. Zheng 3 Y. Z. Wang 1 H. Miyamoto 4 Z. C. Cai 2 J. S. Ping 3 Y. Z. Zhu 1
Show affiliations
DOI:10.1155/2019/3926082
Received 2019-02-02, accepted for publication 2019-05-26, Published 2019-05-26
PDF
摘要

The study on the Schrödinger basin may provide important clues about the formation of South Pole-Aitken (SPA) basin. In this paper, the thermophysical features of Schrödinger basin were evaluated using the Chang’E-2 microwave sounder (CELMS) data. The results are as follows. (1) The geological units are reevaluated with the CELMS data and a new geological view was provided according to the brightness temperature and emissivity maps. (2) The surface topography plays an important role in the observed CELMS data. (3) The hot anomaly in the basin floor indicates a warm substrate. (4) The pyroxene-bearing anorthosite is probably an important cause for the cold anomaly over the lunar surface. Also, the study proves the applicability of the CELMS data applying in high latitude regions to a certain extent.

授权许可

Copyright © 2019 Z. G. Meng et al. 2019
This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

通讯作者

1. Y. C. Zheng.Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China, cas.cn.zyc@bao.ac.cn
2. Y. Z. Wang.College of Geoexploration Science and Technology, Jilin University, Changchun 130026, China, jlu.edu.cn.iamwangyongzhi@126.com

推荐引用方式

Z. G. Meng,H. H. Wang,Y. C. Zheng,Y. Z. Wang,H. Miyamoto,Z. C. Cai,J. S. Ping,Y. Z. Zhu. Several Geological Issues of Schrödinger Basin Exposed by CE-2 CELMS Data. Advances in Astronomy ,Vol.2019(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] G. P. Hu, Y. C. Zheng, A. A. Xu, Z. S. Tang. et al.(2016). Qualitative verification of CE-2's microwave measurement: relative calibration based on brightness temperature model and data fusion. IEEE Transactions on Geoscience and Remote Sensing.54(3):1598-1609. DOI: 10.1130/2011.2477(04).
[2] D. E. Wilhelms, K. A. Howard, H. G. Wilshire. USGS Map I-1162 US Geological Survey. . DOI: 10.1130/2011.2477(04).
[3] B. C. Murray, R. L. Wildey. (1964). Surface temperature variations during the lunar nighttime. The Astrophysical Journal.139(5):734-750. DOI: 10.1130/2011.2477(04).
[4] Z. G. Meng, H. H. Wang, X. Y. Li. (2018). Potential geological significations of Crisium basin revealed by CE-2 CELMS data. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences.42(XLII-3):1279-1284. DOI: 10.1130/2011.2477(04).
[5] Z. Meng, Q. Wang, H. Wang, T. Wang. et al.(2018). Potential geologic significances of hertzsprung basin revealed by CE-2 CELMS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.11(10):3713-3720. DOI: 10.1130/2011.2477(04).
[6] Z. G. Meng, L. Cui, T. X. Wang, Z. C. Cai. et al.Cold behavior of moon surface demonstrated by typical copernican craters using CE-2 CELMS data. . DOI: 10.1130/2011.2477(04).
[7] P. D. Spudis. (1994). Early crustal evolution. book reviews: the geology of multi-ring impact basins. the moon and other planets. Science.264:1180-1181. DOI: 10.1130/2011.2477(04).
[8] Z. G. Meng, G. D. Yang, J. S. Ping. (2016). Influence of (FeO+TiO2) abundance on the microwave thermal emissions of lunar regolith. Science China Earth Sciences.59(7):1498-1507. DOI: 10.1130/2011.2477(04).
[9] Z. Cai, T. Lan, C. Zheng. (2017). Hierarchical MK splines: algorithm and applications to data fitting. IEEE Transactions on Multimedia.19(5):921-934. DOI: 10.1130/2011.2477(04).
[10] Z. G. Meng, Y. Xu, Z. C. Cai, S. B. Chen. et al.(2014). Influence of lunar topography on simulated surface temperature. Advances in Space Research.54(10):2131-2139. DOI: 10.1130/2011.2477(04).
[11] G. H. Heiken, D. T. Vaniman, B. M. French. (1991). A User's Guide to the Moon. DOI: 10.1130/2011.2477(04).
[12] B. Shankar, G. R. Osinski, I. Antonenko, C. D. Neish. et al.(2013). A multispectral geological study of the schrödinger impact basin. Canadian Journal of Earth Sciences.50(1):44-63. DOI: 10.1130/2011.2477(04).
[13] W. G. Zhang, J. S. Jiang, H. G. Liu, X. H. Zhang. et al.(2010). Distribution and anomaly of microwave emission at Lunar South Pole. Science China Earth Sciences.53(3):465-474. DOI: 10.1130/2011.2477(04).
[14] E. M. Shoemaker, M. S. Robinson, E. M. Eliason. (1994). The south pole region of the moon as seen by Clementine. Science.266(5192):1851-1854. DOI: 10.1130/2011.2477(04).
[15] Y. C. Zheng, K. T. Tsang, K. L. Chan. (2012). First microwave map of the Moon with Chang'E-1 data: the role of local time in global imaging. Icarus.219(1):194-210. DOI: 10.1130/2011.2477(04).
[16] X. H. Gong, Y. Q. Jin. (2012). Diurnal change of thermal emission with 'hot spots' and 'cold spots' of fresh lunar craters observed by Chinese Chang’E-1. Scientia Sinica.42(8):923. DOI: 10.1130/2011.2477(04).
[17] P. D. Spudis, B. Bussey, J. Plescia, J.-L. Joset. et al.(2008). Geology of shackleton crater and the south pole of the moon. Geophysical Research Letters.35(14):63-72. DOI: 10.1130/2011.2477(04).
[18] D. A. Kring, G. Y. Kramer, G. S. Collins, R. W. K. Potter. et al.(2016). Peak-ring structure and kinematics from a multi-disciplinary study of the Schrödinger impact basin. Nature Communications. DOI: 10.1130/2011.2477(04).
[19] Y. Lu, J. S. Ping, V. V. Shevchenko. Volcanic activity of the Mare Moscoviense and Schrödinger basin. . DOI: 10.1130/2011.2477(04).
[20] J. W. Salisbury, G. R. Hunt. (1967). Infrared images of Tycho on dark moon. Science.155(3766):1098-1100. DOI: 10.1130/2011.2477(04).
[21] Z. G. Meng, R. Zhao, Z. C. Cai. (2017). Microwave thermal emission at Tycho area and its geological significance. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.10(6):1-7. DOI: 10.1130/2011.2477(04).
[22] L. R. Gaddis, M. I. Staid, J. A. Tyburczy, B. R. Hawke. et al.(2003). Compositional analyses of lunar pyroclastic deposits. Icarus.161(2):262-280. DOI: 10.1130/2011.2477(04).
[23] A. J. Dombard, S. A. Hauck, J. A. Balcerski. (2013). On the origin of mascon basins on the Moon (and beyond). Geophysical Research Letters.40(1):28-32. DOI: 10.1130/2011.2477(04).
[24] K. L. Chan, K. T. Tsang, B. Kong, Y.-C. Zheng. et al.(2010). Lunar regolith thermal behavior revealed by Chang'E-1 microwave brightness temperature data. Earth and Planetary Science Letters.295(1-2):287-291. DOI: 10.1130/2011.2477(04).
[25] R. W. Shorthill, J. M. Saari. (1965). Nonuniform cooling of the eclipsed moon: a listing of thirty prominent anomalies. Science.150(3693):210-212. DOI: 10.1130/2011.2477(04).
[26] Z. Meng, J. Zhang, Z. Cai, J. Ping. et al.(2017). Microwave thermal emission features of mare orientale revealed by CELMS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.10(6):2991-2998. DOI: 10.1130/2011.2477(04).
[27] G. Y. Kramer, D. A. Kring, A. L. Nahm, C. M. Pieters. et al.(2013). Spectral and photogeologic mapping of Schrödinger Basin and implications for post-South Pole-Aitken impact deep subsurface stratigraphy. Icarus.223(1):131-148. DOI: 10.1130/2011.2477(04).
[28] P. S. Kumar, U. Sruthi, N. Krishna. (2016). Recent shallow moonquake and impact‐triggered boulder falls on the Moon: New insights from the Schrödinger basin. Journal of Geophysical Research Planets.121(2):147-179. DOI: 10.1130/2011.2477(04).
[29] K. Uemoto, M. Ohtake, J. Haruyama. Purest anorthosite distribution in the lunar South Pole-Aitken basin derived from SELENE multiband imager. . DOI: 10.1130/2011.2477(04).
[30] L. He, L. Lang, Q. Li, W. Zheng. et al.(2013). Effect of surface roughness on microwave brightness temperature from lunar surface: numerical analysis with a hybrid method. Advances in Space Research.51(1):179-187. DOI: 10.1130/2011.2477(04).
[31] G. P. Hu, Y. C. Zheng, A. A. Xu, Z. S. Tang. et al.(2016). Lunar surface temperature of global moon: preparation of database with topographic and albedo effects. IEEE Geoscience and Remote Sensing Letters.13(1):110-114. DOI: 10.1130/2011.2477(04).
[32] Z. Meng, S. Hu, T. Wang, C. Li. et al.(2018). Passive microwave probing mare basalts in mare imbrium using CE-2 CELMS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.11(9):3097-3104. DOI: 10.1130/2011.2477(04).
[33] D. A. Kring, G. Y. Kramer, P. W. K. Potter. Interpreting the depth of origin of the Schrödinger peak ring and implications for other impact basins. . DOI: 10.1130/2011.2477(04).
[34] I. Garrick-Bethell, M. T. Zuber. (2009). Elliptical structure of the lunar South Pole-Aitken basin. Icarus.204(2):399-408. DOI: 10.1130/2011.2477(04).
[35] G. P. Hu, R. Bugiolacchi, K. L. Chan, Y. C. Zheng. et al.A new map of thermal variations within Oceanus Procellarum and Mare Imbrium using Chang'e (CE-2) microwave radiometers (MRMs) data. . DOI: 10.1130/2011.2477(04).
[36] S. C. Mest. (2011). The geology of Schrödinger basin: insights from post-Lunar Orbiter data. Geological Society of America.477:95-115. DOI: 10.1130/2011.2477(04).
[37] Z. G. Meng, X. Y. Li, S. B. Chen. (2019). Thermophysical features of shallow lunar crust demonstrated by typical Copernican craters using CE-2 CELMS data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.99:1-10. DOI: 10.1130/2011.2477(04).
文献评价指标
浏览 4次
下载全文 0次
评分次数 0次
用户评分 0.0分
分享 0次