首页 » 文章 » 文章详细信息
Physiological Reports Volume 7 ,Issue 11 ,2019-06-03
Beta‐cell excitability and excitability‐driven diabetes in adult Zebrafish islets
Original Research
Christopher H. Emfinger 1 , 2 , 3 Réka Lőrincz 1 , 3 , 4 Yixi Wang 1 , 3 Nathaniel W. York 1 , 3 Soma S. Singareddy 1 , 3 Jennifer M. Ikle 1 , 3 , 5 Robert C. Tryon 1 , 3 Conor McClenaghan 1 , 3 Zeenat A. Shyr 2 , 3 Yan Huang 1 , 3 , 5 Christopher A. Reissaus 1 Dirk Meyer 4 David W. Piston 1 , 3 Krzysztof Hyrc 3 Maria S. Remedi 1 , 2 , 3 Colin G. Nichols 1 , 3
Show affiliations
DOI:10.14814/phy2.14101
Received 2019-04-23, accepted for publication 2019-04-30, Published 2019-04-30
PDF
摘要

Abstract Islet β‐cell membrane excitability is a well‐established regulator of mammalian insulin secretion, and defects in β‐cell excitability are linked to multiple forms of diabetes. Evolutionary conservation of islet excitability in lower organisms is largely unexplored. Here we show that adult zebrafish islet calcium levels rise in response to elevated extracellular [glucose], with similar concentration–response relationship to mammalian β‐cells. However, zebrafish islet calcium transients are nor well coupled, with a shallower glucose‐dependence of cytoplasmic calcium concentration. We have also generated transgenic zebrafish that conditionally express gain‐of‐function mutations in ATP‐sensitive K+ channels (KATP‐GOF) in β‐cells. Following induction, these fish become profoundly diabetic, paralleling features of mammalian diabetes resulting from equivalent mutations. KATP‐GOF fish become severely hyperglycemic, with slowed growth, and their islets lose glucose‐induced calcium responses. These results indicate that, although lacking tight cell‐cell coupling of intracellular Ca2+, adult zebrafish islets recapitulate similar excitability‐driven β‐cell glucose responsiveness to those in mammals, and exhibit profound susceptibility to diabetes as a result of inexcitability. While illustrating evolutionary conservation of islet excitability in lower vertebrates, these results also provide important validation of zebrafish as a suitable animal model in which to identify modulators of islet excitability and diabetes.

关键词

zebrafish;pancreas;metabolism;K;insulin secretion;Calcium channels

授权许可

© 2019 Published by the Physiological Society and the American Physiological Society

图表

l‐type Ca currents in zebrafish β‐cells. (A) Representative recordings of whole‐cell Ca2+ currents (top) in response to voltage steps (bottom) from −45 mV holding potential to −45 to + 65mV are inhibited by (10 μmol/L) nifedipine (right). Gray line in upper panels indicates 0 pA. (B) Summary of current–voltage relationship for calcium currents in isolated zebrafish β‐cells (14 total primary (1°) and 2 secondary (2°) islet cells).

Intracellular [Ca2+] in adult islets is glucose‐sensitive. (A, left) Islets were imaged in microchambers (~4 μL) cored out of agar, on the bottom of a petri dish. Flow of bulk solution into and out of the dish (~1 mL) was controlled as indicated. (right) GCaMP fluorescence and anti‐insulin staining in representative islet, together with overlay (GCamp fluorescence green, anti‐insulin red). (B) Individual frames of islets at low (2 mmol/L) and high (20 mmol/L) glucose (middle), and in 20 mmol/L glucose plus 30 mmol/L KCl (right). (C) Representative fluorescence traces from individual islets, normalized to initial fluorescence (relative fluorescence units, RFU), during transitions from low glucose to 20 mmol/L d‐ or l‐glucose, and 20 mmol/L glucose plus 30 mmol/L KCl, in absence or presence of diazoxide, as indicated. (D) Summary of calcium responses to high 2 or 20 mmol/L d‐ or l‐glucose, or 20 glucose plus 30 mmol/L KCl, in absence or presence of diazoxide, as indicated from experiments as in C (N = 6–10 in each case). (**) P < 0.05.

Glucose‐ and amino acid‐sensitivity of intracellular [Ca2+]. (A) Summary of [glucose]‐GCamp fluorescence response relationship from experiments as in Figure 1, with peak fluorescence at the indicated glucose concentrations normalized to the maximum fluorescence elicited by KCl depolarization (N = 8–17 islets/concentration). (B) Representative trace showing islet treated with 20 mmol/L glucose in presence of 10 μmol/L nifedipine. (C) Summary of calcium responses to high (20 mmol/L) glucose in absence (N = 8) or presence of nifedipine (N = 10). (*) P < 0.05. (D) Calcium responses to 8 mmol/L glucose in absence or presence of additional amino acids (normalized to maximum fluorescence in KCl. (E) Representative trace for islet calcium responses to sucrose (20 mmol/L).

Ca2+ transients are not well‐coupled between β‐cells in Zebrafish islets. (A) Fluorescence response to switch from 2, to 12, to 20 mmol/L glucose and then KCl. Individual ROI traces are shown for 87 tracked cells from a representative islet, plus averaged trace from the whole islet (red). Some cells (blue) were active at basal (2 mmol/L) glucose. Others activated at 12 mmol/L glucose (green) or only at 20 mmol/L glucose (orange). (B) Representative individual traces from the early 12 mmol/L transition from islet in (A). (C) Cross‐correlation matrix (determined by PeakCaller) of all 87 tracked cells in (A). (D) Representative PCR of Cx35b cDNAs from islets, brains, and hearts of zebrafish. Sets a and b are different pools of islets (biological replicates). (E) Western blot analysis of zebrafish Cx35 protein. Cx35 is detected in zebrafish brain but not in zebrafish islets.

Islet KATP‐GOF results in profound diabetes. (A) Transgenic strategy for conditional KATP‐GOF expression in zebrafish islet. mCherry, expressed under insulin promoter control (upper panel), is excised and KATP‐GOF construct is expressed, after (lower left panel) Cre recombination. A F2 larva is shown in the right lower panel, with the islet highlighted in the yellow circle. (B) GFP (left column) and bright‐field (right column) images of dissected islets from adult control, uninduced KATP‐GOF and induced KATP‐GOF fish (images taken at 12 × ). (C) Random blood glucose levels in controls (N = 25), uninduced (N = 15), and induced (5 days heat‐shock, N = 24) KATP‐GOF zebrafish. In control and induced fish, blood glucose were measured 2 days after the last heat shock. (D) Time course of change in blood glucose following KATP‐GOF induction. (E) Glucose levels in adult (10 week old) KATP‐GOF fish are similarly elevated, whether induced as larvae (N = 4), or as adults (N = 15).

Islet KATP‐GOF expression results in basal KATP and ATP‐insensitive channels. (A) Representative excised inside‐out patch‐clamp recordings (at −50 mV) from β‐cells isolated from control (black) or KATP‐GOF (red) islets, in the presence of ATP at concentrations (in micromolar) as indicated. (B) Steady‐state dependence of membrane current on [ATP] (relative to current in zero ATP (Irel)) for control and KATP‐GOF channels. Data points represent the mean ± SEM. (n = 4 patches in each case). The fitted lines correspond to least squares fits of a Hill equation (see Methods). (*) P < 0.01 compared to wild‐type KATP (controls) by unpaired Student's t test. (C) In whole‐cell mode basal conditions, voltage‐clamp ramps from −120 to −40 mV (over 1 sec) activates similar Kv currents above −20 mV in both KATP‐GOF and control cell. However, basal KATP channel activation is evident in KATP‐GOF cells as additional ~linear current reversing at −80 mV (boxed current is amplified in insert). (D) Averaged basal currents at −120 and −40 mV from experiments as in C (n = 5 control cells, n = 7 KATP‐GOF cells).

KATP‐GOF inhibits glucose‐dependent Ca and causes secondary diabetic complications. (A) Representative recording of intracellular calcium response to switch from 2 to 20 mmol/L glucose in control (gCAMP6s only) and KATP‐GOF/gCAMP6s islets from two different founder lineages (M203, M111). (B) Average calcium response to 20 mmol/L glucose from control (n = 8) and two different founder lineages (M203, n = 8 and M111, n = 7) of KATP‐GOF/gCAMP6s fish, normalized to absolute calcium response to depolarization in KCl. (C) Body mass (N = 10–14) and (D) body length (N = 18) in KATP‐GOF (+) and control (−) fish that were induced as larvae. B, C, and D are analyzed by 1‐way ANOVA followed by Tukey's post‐tests. (*) P < 0.05, (**) P < 0.01.

通讯作者

Colin G. Nichols.Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri;Center for the Investigation of Membrane Excitability Diseases, Washington University in St. Louis School of Medicine, St. Louis, Missouri.cnichols@wustl.edu

推荐引用方式

Christopher H. Emfinger,Réka Lőrincz,Yixi Wang,Nathaniel W. York,Soma S. Singareddy,Jennifer M. Ikle,Robert C. Tryon,Conor McClenaghan,Zeenat A. Shyr,Yan Huang,Christopher A. Reissaus,Dirk Meyer,David W. Piston,Krzysztof Hyrc,Maria S. Remedi,Colin G. Nichols. Beta‐cell excitability and excitability‐driven diabetes in adult Zebrafish islets. Physiological Reports ,Vol.7, Issue 11(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Schindelin, J., I. Arganda‐Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, et al. 2012. Fiji: an open‐source platform for biological‐image analysis. Nat. Methods 9:676–682.
[2] Moss, J. B., P. Koustubhan, M. Greenman, M. J. Parsons, I. Walter, and L. G. Moss. 2009. Regeneration of the pancreas in adult zebrafish. Diabetes 58:1844–1851.
[3] Brereton, M. F., M. Iberl, K. Shimomura, Q. Zhang, A. E. Adriaenssens, P. Proks, et al. 2014. Reversible changes in pancreatic islet structure and function produced by elevated blood glucose.. Nat. Commun. 5:4639.
[4] Farnsworth, N. L., and R. K. P. Benninger. 2014. New insights into the role of connexins in pancreatic islet function and diabetes. FEBS Lett. 588:1278–1287.
[5] Argenton, F., E. Zecchin, and M. Bortolussi. 1999. Early appearance of pancreatic hormone‐expressing cells in the zebrafish embryo. Mech. Dev. 87:217–221.
[6] Johnston Natalie, R., K. Mitchell Ryan, E. Haythorne, P. Pessoa Maria, F. Semplici, J. Ferrer, et al. 2016. Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab. 24:389–401.
[7] Sidi, S., E. Busch‐Nentwich, R. Friedrich, U. Schoenberger, and T. Nicolson. 2004. Gemini encodes a zebrafish L‐type calcium channel that localizes at sensory hair cell ribbon synapses. J. Neurosci. 24:4213–4223.
[8] Kwan, K. M., E. Fujimoto, C. Grabher, B. D. Mangum, M. E. Hardy, D. S. Campbell, et al. 2007. The Tol2kit: a multisite gateway‐based construction kit for Tol2 transposon transgenesis constructs. Dev. Dyn. 236:3088–3099.
[9] Biemar, F., F. Argenton, R. Schmidtke, S. Epperlein, B. Peers, and W. Driever. 2001. Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev. Biol. 230:189–203.
[10] Artimovich, E., R. K. Jackson, M. B. C. Kilander, Y.‐C. Lin, and M. W. Nestor. 2017. PeakCaller: an automated graphical interface for the quantification of intracellular calcium obtained by high‐content screening. BMC Neurosci. 18:72.
[11] Girard, C. A., F. T. Wunderlich, K. Shimomura, S. Collins, S. Kaizik, P. Proks, et al. 2009. Expression of an activating mutation in the gene encoding the KATP channel subunit Kir6.2 in mouse pancreatic beta cells recapitulates neonatal diabetes. J. Clin. Invest. 119:80–90.
[12] Silva, J. R., P. Cooper, and C. G. Nichols. 2014. Modeling K, ATP‐dependent excitability in pancreatic islets. Biophys. J . 107:2016–2026.
[13] Polak, M., and H. Cave. 2007. Neonatal diabetes mellitus: a disease linked to multiple mechanisms. Orphanet J. Rare Dis. 2:12.
[14] Gloyn, A. L., E. R. Pearson, J. F. Antcliff, P. Proks, G. J. Bruining, A. S. Slingerland, et al. 2004. Activating mutations in the gene encoding the ATP‐sensitive potassium‐channel subunit Kir6.2 and permanent neonatal diabetes. N. Engl. J. Med. 350:1838–1849.
[15] Zhou, W., E. J. Horstick, H. Hirata, and J. Y. Kuwada. 2008. Identification and expression of voltage‐gated calcium channel β subunits in Zebrafish. Dev. Dyn. 237:3842–3852.
[16] Watanabe, M. 2017. Gap junction in the teleost fish lineage: duplicated connexins may contribute to skin pattern formation and body shape determination. Front. Cell Dev. Biol. 5:13.
[17] Antunes, C. M., A. P. Salgado, L. M. Rosário, and R. M. Santos. 2000. Differential patterns of glucose‐induced electrical activity and intracellular calcium responses in single mouse and rat pancreatic islets. Diabetes 49:2028–2038.
[18] Parsons, M. J., H. Pisharath, S. Yusuff, J. C. Moore, A. F. Siekmann, N. Lawson, et al. 2009. Notch‐responsive cells initiate the secondary transition in larval zebrafish pancreas. Mech. Dev. 126:898–912.
[19] Singh, S. P., S. Janjuha, T. Hartmann, Ö. Kayisoglu, J. Konantz, S. Birke, et al. 2017. Different developmental histories of beta‐cells generate functional and proliferative heterogeneity during islet growth. Nat. Commun. 8:664.
[20] Carlisle, T. C., and A. B. Ribera. 2014. Connexin 35b expression in Danio rerio embryos and larvae spinal cord. J. Comp. Neurol. 522:861–875.
[21] Li, M., L. A. Maddison, P. Page‐McCaw, and W. Chen. 2014. Overnutrition induces [Beta]‐cell differentiation through prolonged activation of [Beta]‐cells in zebrafish larvae. Am. J. Physiol. Endocrinol. Metab. 306:E799–E807.
[22] Kimmel, R. A., and D. Meyer. 2016. Zebrafish pancreas as a model for development and disease. Methods Cell Biol. 134:431–461.
[23] Lipscombe, D. 2002. L‐type calcium channels. Circ. Res. 90:933.
[24] Klee, P., S. Bavamian, A. Charollais, D. Caille, J. Cancela, M. Peyrou, et al. 2008. Gap junctions and insulin secretion. Pp. 111–132 in and G. I. Bell, eds. Pancreatic beta cell in health and disease. Tokyo, Springer Japan.
[25] Kenty, J. H. R., and D. A. Melton. 2015. Testing pancreatic islet function at the single cell level by calcium influx with associated marker expression. PLoS ONE 10:e0122044.
[26] Remedi, M. S., and J. C. Koster. 2010. K(ATP) channelopathies in the pancreas. Pflugers Arch. 460:307–320.
[27] Chen, J., L. Xia, M. R. Bruchas, and L. Solnica‐Krezel. 2017. Imaging early embryonic calcium activity with GCaMP6s transgenic zebrafish. Dev. Biol. 430:385–396.
[28] Head, W. S., M. L. Orseth, C. S. Nunemaker, L. S. Satin, D. W. Piston, and R. K. Benninger. 2012. Connexin‐36 gap junctions regulate in vivo first‐ and second‐phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61:1700–1707.
[29] Liu, Z., P. B. Jeppesen, S. Gregersen, X. Chen, and K. Hermansen. 2008. Dose‐ and glucose‐dependent effects of amino acids on insulin secretion from isolated mouse islets and clonal INS‐1E beta‐cells. Rev. Diabet. Stud. 5:232–244.
[30] Benninger, R. K., M. Zhang, W. S. Head, L. S. Satin, and D. W. Piston. 2008. Gap junction coupling and calcium waves in the pancreatic islet. Biophys. J . 95:5048–5061.
[31] Koster, J. C., B. A. Marshall, N. Ensor, J. A. Corbett, and C. G. Nichols. 2000. Targeted overactivity of [Beta] cell KATP channels induces profound neonatal diabetes. Cell 100:645–654.
[32] Benninger, R. K. P., T. Hutchens, W. S. Head, M. S. McCaughey, M. Zhang, S. J. Le Marchand, et al. 2014. Intrinsic islet heterogeneity and gap junction coupling determine spatiotemporal Ca(2 + ) wave dynamics. Biophys. J . 107:2723–2733.
[33] Eames, S. C., L. H. Philipson, V. E. Prince, and M. D. Kinkel. 2010. Blood sugar measurement in zebrafish reveals dynamics of glucose homeostasis. Zebrafish 7:205–213.
[34] Henquin, J.‐C., D. Dufrane, and M. Nenquin. 2006. Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55:3470–3477.
[35] Lopez‐Ramirez, M. A., C.‐F. Calvo, E. Ristori, J.‐L. Thomas, and S. Nicoli. 2016. Isolation and culture of adult zebrafish brain‐derived neurospheres. J. Vis. Exp. 108:53617.
[36] Striessnig, J., N. J. Ortner, and A. Pinggera. 2015. Pharmacology of L‐type calcium channels: novel drugs for old targets? Curr. Mol. Pharmacol. 8:110–122.
[37] Chen, S., C. Li, G. Yuan, and F. Xie. 2007. Anatomical and histological observation on the pancreas in adult zebrafish. Pancreas 34:120–125.
[38] Tarifeño‐Saldivia, E., A. Lavergne, A. Bernard, K. Padamata, D. Bergemann, M. L. Voz, et al. 2017. Transcriptome analysis of pancreatic cells across distant species highlights novel important regulator genes. BMC Biol. 15:21.
[39] Jabeen, S., and V. Thirumalai. 2013. Distribution of the gap junction protein connexin 35 in the central nervous system of developing zebrafish larvae. Front. Neural. Circuits. 7:91.
[40] Wang, Z., N. W. York, C. G. Nichols, and M. S. Remedi. 2014. Pancreatic [beta]‐cell dedifferentiation in diabetes and redifferentiation following insulin therapy. Cell Metab. 19:1–11.
[41] Bavamian, S., P. Klee, A. Britan, C. Populaire, D. Caille, J. Cancela, et al. 2007. Islet‐cell‐to‐cell communication as basis for normal insulin secretion. Diabetes Obes. Metab. 9(Suppl 2):118–132.
[42] Remedi, M. S., H. T. Kurata, A. Scott, F. T. Wunderlich, E. Rother, A. Kleinridders, et al. 2009. Secondary consequences of [Beta] cell inexcitability: identification and prevention in a murine model of KATP‐induced neonatal diabetes mellitus. Cell Metab. 9:140–151.
[43] Sanhueza, D., A. Montoya, J. Sierralta, and M. Kukuljan. 2009. Expression of voltage‐activated calcium channels in the early zebrafish embryo. Zygote 17:131–135.
[44] Emfinger, C. H., A. Welscher, Z. Yan, Y. Wang, H. Conway, J. B. Moss, et al. 2017. Expression and function of ATP‐dependent potassium channels in zebrafish islet β‐cells. Roy. Soc. Open Sci. 4:160808.
[45] Lorincz, R., C. H. Emfinger, A. Walcher, M. Giolai, C. Krautgasser, M. S. Remedi, et al. 2018. In vivo monitoring of intracellular Ca(2 + ) dynamics in the pancreatic beta‐cells of zebrafish embryos. Islets 10:221–238.
[46] Kuryshev, Y. A., A. M. Brown, E. Duzic, and G. E. Kirsch. 2014. Evaluating state dependence and subtype selectivity of calcium channel modulators in automated electrophysiology assays. Assay Drug Dev. Technol. 12:110–119.
[47] Koster, J. C., M. A. Permutt, and C. G. Nichols. 2006. Diabetes and insulin secretion: the ATP‐sensitive K+ channel (KATP) connection. Diabetes 54:3065–3072.
[48] Mangoni, M. E., B. Couette, L. Marger, E. Bourinet, J. Striessnig, and J. Nargeot. 2006. Voltage‐dependent calcium channels and cardiac pacemaker activity: from ionic currents to genes. Prog. Biophys. Mol. Biol. 90:38–63.