首页 » 文章 » 文章详细信息
Advanced Science Volume 6 ,Issue 8 ,2019-02-15
Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates?
Essay
Yunxuan Zhao 1 , 2 Run Shi 1 Xuanang Bian 1 , 2 Chao Zhou 1 Yufei Zhao 1 Shuai Zhang 1 , 2 Fan Wu 1 , 2 Geoffrey I. N. Waterhouse 3 Li‐Zhu Wu 1 Chen‐Ho Tung 1 Tierui Zhang 1 , 2
Show affiliations
DOI:10.1002/advs.201802109
Received 2018-11-22,
PDF
摘要

Abstract The enzyme nitrogenase inspires the development of novel photocatalytic and electrocatalytic systems that can drive nitrogen reduction with water under similar low‐temperature and low‐pressure conditions. While photocatalytic and electrocatalytic N2 fixation are emerging as hot new areas of fundamental and applied research, serious concerns exist regarding the accuracy of current methods used for ammonia detection and quantification. In most studies, the ammonia yields are low and little consideration is given to the effect of interferants on NH3 quantification. As a result, NH3 yields reported in many works may be exaggerated and erroneous. Herein, the advantages and limitations of the various methods commonly used for NH3 quantification in solution (Nessler's reagent method, indophenol blue method, and ion chromatography method) are systematically explored, placing particular emphasis on the effect of interferants on each quantification method. Based on the data presented, guidelines are suggested for responsible quantification of ammonia in photocatalysis and electrocatalysis.

关键词

photocatalysis;electrocatalysis;detection;ammonia

授权许可

© 2019 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim

图表

Standard curves for NH3 using a) Nessler's reagent, b) indophenol blue, and c) ion chromatography methods. d) Performance comparison of the different methods for ammonia quantification (error bars are based on triplicate measurements).

Photographs of ammonia solutions with different pH in the presence of a) Nessler's reagent and b) indophenol blue. c,d) Concentrations of ammonia detected using each method, respectively. The ammonia concentration was 1000 µg L−1 in all experiments.

Standard curves for NH3 detection with Nessler's reagent at a) pH 1 and b) pH 13. c) The apparent concentration of ammonia detected in the presence of different metal ions. The ammonia concentration was 1000 µg L−1 in all experiments. The metal ion concentrations were 0.01 mmol L−1.

Photographs of different reaction solutions and NH3 concentrations determined by a,c) the Nessler's reagent method and b,d) the indophenol blue method in the presence of methanol and its derived oxidation products. The ammonia concentration was 600 µg L−1 in all experiments. The sacrificial agent concentration was 40 vol%.

The ammonia concentration determined by ion chromatography for a) different types water (FUP is fresh ultrapure water, SUP is stale ultrapure water, FR is fresh redistilled water, and SR is stale redistilled water), and b–d) aqueous solutions containing LDH, C‐based materials, and N‐doped materials before and after washing with ultrapure water. e,f) Time course of NH3 evolution in an Ar atmosphere under UV–vis light irradiation (200–800 nm) for various substances used in catalyst synthesis, as well as a g‐C3N4 photocatalyst and N‐containing materials.

Flowchart showing the criteria that need to be considered when selecting a suitable method for ammonia detection (IC = ion chromatography method, Nessler = Nessler's reagent method, and IB = indophenol blue method).

Table 1

通讯作者

Tierui Zhang.Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China;Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100190, P. R. China.tierui@mail.ipc.ac.cn

推荐引用方式

Yunxuan Zhao,Run Shi,Xuanang Bian,Chao Zhou,Yufei Zhao,Shuai Zhang,Fan Wu,Geoffrey I. N. Waterhouse,Li‐Zhu Wu,Chen‐Ho Tung,Tierui Zhang. Ammonia Detection Methods in Photocatalytic and Electrocatalytic Experiments: How to Improve the Reliability of NH3 Production Rates?. Advanced Science ,Vol.6, Issue 8(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] a) L. F. Greenlee, J. N. Renner, S. L. Foster, ACS Catal. 2018, 8, 7820;
[2] a) S. Licht, B. Cui, B. Wang, F.‐F. Li, J. Lau, S. Liu, Science 2014, 345, 637;
[3] V. K. Shah, W. J. Brill, Proc. Natl. Acad. Sci. U. S. A. 1977, 74, 3249.
[4] a) H. Li, J. Shang, Z. H. Ai, L. Z. Zhang, J. Am. Chem. Soc. 2015, 137, 6393;
[5] Y. Zhu, D. Yuan, H. Lin, T. Zhou, Anal. Lett. 2016, 49, 665.
[6] a) C. Guo, J. Ran, A. Vasileff, S.‐Z. Qiao, Energy Environ. Sci. 2018, 11, 45;
[7] a) S. Chen, S. Perathoner, C. Ampelli, C. Mebrahtu, D. Su, G. Centi, Angew. Chem. 2017, 129, 2743;
[8] H. Li, J. Shang, Z. Ai, L. Zhang, J. Am. Chem. Soc. 2015, 137, 6393.
[9] K. A. Brown, D. F. Harris, M. B. Wilker, A. Rasmussen, N. Khadka, H. Hamby, S. Keable, G. Dukovic, J. W. Peters, L. C. Seefeldt, Science 2016, 352, 448.
[10] Y. Zhao, Y. Zhao, G. I. Waterhouse, L. Zheng, X. Cao, F. Teng, L. Z. Wu, C. H. Tung, D. O'Hare, T. Zhang, Adv. Mater. 2017, 29, 1703828.
[11] X. Gao, Y. Wen, D. Qu, L. An, S. Luan, W. Jiang, X. Zong, X. Liu, Z. Sun, ACS Sustainable Chem. Eng. 2018, 6, 5342.
[12] H. Yu, R. Shi, Y. Zhao, T. Bian, Y. Zhao, C. Zhou, G. I. N. Waterhouse, L. Z. Wu, C. H. Tung, T. Zhang, Adv. Mater. 2017, 29, 1605148.
[13] C. Lv, C. Yan, G. Chen, Y. Ding, J. Sun, Y. Zhou, G. Yu, Angew. Chem. 2018, 130, 6181.
[14] C. J. M. van der Ham, M. T. M. Koper, D. G. H. Hetterscheid, Chem. Soc. Rev. 2014, 43, 5183.
[15] D. H. Thomas, M. Rey, P. E. Jackson, J. Chromatogr. A 2002, 956, 181.
[16] G. T. Richardson, J. A. Davies, J. G. Edwards, Fresenius' J. Anal. Chem. 1991, 340, 392.
[17] A. LeDuy, R. Samson, Biotechnol. Lett. 1982, 4, 303.
[18] R. Dabundo, M. F. Lehmann, L. Treibergs, C. R. Tobias, M. A. Altabet, P. H. Moisander, J. Granger, PLoS One 2014, 9, e110335.
[19] J. Liu, M. S. Kelley, W. Wu, A. Banerjee, A. P. Douvalis, J. Wu, Y. Zhang, G. C. Schatz, M. G. Kanatzidis, Proc. Natl. Acad. Sci. U. S. A. 2016, 113, 5530.
[20] L. Zhou, C. E. Boyd, Aquaculture 2016, 450, 187.
[21] a) H. Hirakawa, M. Hashimoto, Y. Shiraishi, T. Hirai, J. Am. Chem. Soc. 2017, 139, 10929;