首页 » 文章 » 文章详细信息
Energy Science & Engineering Volume 7 ,Issue 2 ,2019-02-23
Insights into fuel start‐up and self‐sufficiency for fusion energy: The case of CFETR
RESEARCH ARTICLES
Baojie Nie 1 Guangming Ran 2 Qin Zeng 3 Hongfei Du 4 Zaixin Li 5 Yanjing Chen 5 Zuolong Zhu 6 Xueli Zhao 4 , 7 Muyi Ni 1 Fengchen Li 1
Show affiliations
DOI:10.1002/ese3.291
Received 2018-11-07, accepted for publication 2019-01-28, Published 2019-01-28
PDF
摘要

Abstract Commercial tritium resources available are too scarce to fully supply the future fusion reactors after International Thermonuclear Experimental Reactor (ITER). Tritium self‐sufficiency, ITER fails to fully validate, was regarded as one of the most important issues needed to be solved in the pathway of achieving fusion energy. After ITER, several concepts of fusion engineering test reactors and fusion demonstration reactors have been proposed worldwide, for example, Chinese Fusion Engineering Test Reactor (CFETR), Fusion Nuclear Science Facility (FNSF), DEMOnstration fusion reactor (DEMO) in European Union and Korea. CFETR is in the engineering design phase and would be hopefully completed around 2020. Tritium resources for the reactor start‐up and tritium self‐sufficiency are two primary issues besides the steady‐state operation for CFETR. The objectives of this work are as follows: (a) to introduce the preliminary fuel cycle concept and available tritium resources for CFETR, (b) to evaluate and discuss the tritium demand for CFETR start‐up (phase I: 200 MW) and the feasibility of DD start‐up, (c) to identify the possible pathways to tritium self‐sufficiency through sensitivity analysis based on the design baseline of CFETR, (d) to evaluate the consequences in case of failing tritium self‐sufficiency, and (e) to identify future R&D needed for tritium self‐sufficiency. It is expected to give insights into the question on how to start the reactor in a more economical way, into the feasibility of tritium self‐sufficiency, and into the question on what will happen in case of failing tritium self‐sufficiency.

关键词

tritium start‐up;tritium self‐sufficiency;fusion energy;fuel cycle;CFETR

授权许可

© 2019 Society of Chemical Industry and John Wiley & Sons Ltd.

图表
通讯作者

1. Muyi Ni.Sino‐French Institute of Nuclear Engineering and Technology, Sun Yat‐Sen University, Zhuhai, China.nimuyi@mail.sysu.edu.cn
2. Fengchen Li.Sino‐French Institute of Nuclear Engineering and Technology, Sun Yat‐Sen University, Zhuhai, China.nimuyi@mail.sysu.edu.cn

推荐引用方式

Baojie Nie,Guangming Ran,Qin Zeng,Hongfei Du,Zaixin Li,Yanjing Chen,Zuolong Zhu,Xueli Zhao,Muyi Ni,Fengchen Li. Insights into fuel start‐up and self‐sufficiency for fusion energy: The case of CFETR. Energy Science & Engineering ,Vol.7, Issue 2(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Wong C, Merrill B. Use of system code to estimate equilibrium tritium inventory in fusion DT machines, such as ARIES‐AT and components testing facilities. Fusion Eng Des. 2014;89:1482‐1485.
[2] Loarte A, Campbell D. The plasma physics aspects of the tritium burn fraction and the prediction for ITER. 4th IAEA DEMO Programme Workshop, November 15th‐18th, 2016, Karlsruhe, Germany.
[3] Michel R. Tritium inventories of the world oceans and their implications. Nature. 1976;263:103‐106.
[4] Kovari M, Coleman M, Cristescu I, Smith R. Tritium resources available for fusion reactors. Nucl Fusion. 2018;58:026010.
[5] Carella E, Moreno C, Urgorri F, Rapisarda D, Ibarra A. Tritium modelling in HCPB breeder blanket at a system level. Fusion Eng Des. 2017;124:687‐691.
[6] Ni M, Wang Y, Yuan B, Jiang J, Wu Y. Tritium supply assessment for ITER and DEMOnstration power plant. Fusion Eng Des. 2013;88:2422‐2426.
[7] Zhu Z, Nie B, Chen D. A system dynamics model for tritium cycle of pulsed fusion reactor. Fusion Eng Des. 2017;118:5‐10.
[8] Nie B, Ni M, Wei S. Individual dose due to radioactivity accidental release from fusion reactor. J Hazard Mater. 2017;327:135‐143.
[9] Pearson R, Antoniazzi A, Nuttall W. Tritium supply and use: a key issue for the development of nuclear fusion energy. Fusion Eng Des. 2018;136:1140‐1148.
[10] Ying A, Zhang H, Merrill B, Ahn M, Cho S. Breeding blanket system design implications on tritium transport and permeation with high tritium ion implantation: a MATLAB/Simulink, COMSOL integrated dynamic tritium transport model for HCCR TBS. Fusion Eng Des. 2018;136:1153‐1160.
[11] Nie B, Ni M, Liu J, Zhu Z, Zhu ZL, Li F. Insights into potential consequences of fusion hypothetical accident, lessons learnt from the former fission accidents. Environ Pollut. 2019;245:921‐931.
[12] Nie B, Ni M, Jiang J, Wu Y. Dynamic evaluation of environmental impact due to tritium accidental release from the fusion reactor. J Environ Radioact. 2015;148:137‐140.
[13] Konishi S, Asaoka Y, Hiwatari R, Okano K. Possible scenario to start up DT fusion plant without initial loading of tritium. J Plasma Fusion Res. 2000;76:1309‐1312.
[14] Fisher D. Reorganizing algebraic thinking: an introduction to dynamic system modeling. Math Enthusiast. 2017;14:347‐370.
[15] Baylor L, Parks P, Jernigan T, et al. Pellet fuelling and control of burning plasma in ITER. Nucl Fusion. 2007;47:443‐448.
[16] Kasada R, Kwon S, Konishi S, Sakamoto Y, Yamanishi T, Tobita K. A system dynamics model for stock and flow of tritium in fusion power plant. Fusion Eng Des. 2015;98–99:1804‐1807.
[17] Federici G, Biel W, Gilbert M, Kemp R, Taylor N, Wenninger R. European DEMO design strategy and consequences for materials. Nucl Fusion. 2017;57:092002.
[18] Cui S, Zhang D, Lian Q, et al. Evaluation and optimization of tritium breeding, shielding and nuclear heating performances of the helium cooled solid breeder blanket for CFETR. Int J Hydrogen Energy. 2017;42:24263‐24277.
[19] Konishi S, Kasada R, Okino F. Myth of initial loading tritium for DEMO‐Modelling of fuel system and operation scenario. Fusion Eng Des. 2017;121:111‐116.
[20] Glugla M, Antipenkov A, Beloglazov S, et al. The ITER tritium systems. Fusion Eng Des. 2007;82:472‐487.
[21] Kim K, Im K, Kim H, et al. Design concept of K‐DEMO for near‐term implementation. Nucl Fusion. 2015;55:053027.
[22] Chan V, Costley A, Wan B, Garofalo A, Leuer J. Evaluation of CFETR as a fusion nuclear science facility using multiple system codes. Nucl Fusion. 2015;55:023017.
[23] Liu S, Ma X, Jiang K, et al. Conceptual design of the water cooled ceramic breeder blanket for CFETR based on pressurized water cooled reactor technology. Fusion Eng Des. 2017;124:865‐870.
[24] Lazarou S, Vita V, Diamantaki M, et al. A simulated roadmap of hydrogen technology contribution to climate change mitigation based on representative concentration pathways considerations. Energy Sci Eng. 2018;6:116‐125.
[25] Sawan M, Abdou M. Physics and technology conditions for attaining tritium self‐sufficiency for the DT fuel cycle. Fusion Eng Des. 2006;81:1131‐1144.
[26] Wan B, Ding S, Qian J, Li G, Xiao B, Xu G. Physics design of CFETR: determination of the device engineering parameters. IEEE Trans Plasma Sci. 2014;42:495‐502.
[27] Lu L, Zhou L, Zhang H, Weng Y. The effects of industrial energy consumption on energy‐related carbon emissions at national and provincial levels in China. Energy Sci Eng. 2018;6:371‐384.
[28] Ni M, Lian C, Zhang S, Nie B, Jiang J, Team FDS. Structural design and preliminary analysis of liquid lead‐lithium blanket for China fusion engineering test reactor. Fusion Eng Des. 2015;94:61‐66.
[29] Li Z, Feng K, Zhao Z, Zhao F, Feng Y, Xu K. Neutronics study on HCCB blanket for CFETR. Fusion Eng Des. 2017;124:1273‐1276.
[30] Siemer D. Why the molten salt fast reactor (MSFR) is the “best” Gen IV reactor. Energy Sci Eng. 2015;3:83‐97.
[31] Pan L, Chen H, Zeng Q. Sensitivity analysis of tritium breeding ratio and startup inventory for CFETR. Fusion Eng Des. 2016;112:311‐316.
[32] Abdou M, Morley N, Smolentsev S, et al. Blanket/first wall challenges and required R&D on the pathway to DEMO. Fusion Eng Des. 2015;100:2‐43.
[33] Abdou M. Tritium fuel cycle, tritium inventories and physics and technology R&D challenges for: 1) enabling the startup of DEMO and future power plants and 2) attaining tritium self‐sufficiency in fusion reactors. 13th International Symposium on Fusion Nuclear Technology (ISFNT‐13), September 25th‐29th, 2017, Kyoto, Japan.
[34] Cristescu IR, Cristescu I, Doerr L, Glugla M, Murdoch D. Tritium inventories and tritium safety design principles for the fuel cycle of ITER. Nucl Fusion. 2007;47:S458‐S463.
[35] Day C, Giegerich T. The direct internal recycling concept to simplify the fuel cycle of a fusion power plant. Fusion Eng Des. 2013;88:616‐620.
[36] Roth J, Tsitrone E, Loarte A, et al. Recent analysis of key plasma wall interactions issues for ITER. J Nucl Mater. 2009;390–391:1‐9.
[37] Kessel C, Blanchard J, Davis A, et al. Overview of the fusion nuclear science facility, a credible break‐in step on the path to fusion energy. Fusion Eng Des. 2018;135:236‐270.
[38] Ma J. On‐grid electricity tariffs in China: development, reform and prospects. Energy Pol. 2011;39:2633‐2645.
[39] Wang X, Ran G, Wang H, Xiao C, Zhang G, Chen C. Current progress of tritium fuel cycle technology for CFETR. J Fusion Energy. 2019;38:125‐137.
[40] Zheng S, King D, Garzotti L, Surrey E, Todd T. Fusion reactor start‐up without an external tritium source. Fusion Eng Des. 2016;103:13‐20.
[41] Li J, Wan Y. Present state of Chinese magnetic fusion development and future plans. J Fusion Energy. 2019;38:113‐124.
[42] Wan Y, Li J, Liu Y, et al. Overview of the present progress and activities on the CFETR. Nucl Fusion. 2017;57:102009.
[43] El‐Guebaly L, Malang S. Toward the ultimate goal of tritium self‐sufficiency: technical issues and requirements imposed on ARIES advanced power plants. Fusion Eng Des. 2009;84:2072‐2083.
[44] Fischer U, Bachmann C, Palermo I, Pereslavtsev P, Villari R. Neutronics requirements for a DEMO fusion power plant. Fusion Eng Des. 2015;98‐99:2134‐2137.
[45] ITER Organization. Preliminary Safety Report, (Rapport Préliminaire de Sûreté, RPrS), ITER_D_3ZR2NC v3.0.
[46] Anderson J, Bartlit J, Carlson R, et al. Experience of TSTA milestone runs with 100 grams‐level of tritium. Fusion Technol. 1988;14:438‐443.
[47] Bigot B. ITER: a unique international collaboration to harness the power of the stars. C R Phys. 2017;18:367‐371.
[48] Abdou M, Vold E, Gung C, Youssef M, Shin K. Deuterium‐tritium fuel self‐sufficiency in fusion reactors. Fusion Technol. 1986;9:250‐285.
[49] Chen H, Pan L, Lv Z, Li W, Zeng Q. Tritium fuel cycle modeling and tritium breeding analysis for CFETR. Fusion Eng Des. 2016;106:17‐20.
[50] Giancarli L, Ahn M, Bonnett I, et al. ITER TBM program and associated system engineering. Fusion Eng Des. 2018;136:815‐821.
[51] Counsell G, Coad P, Grisola C, et al. Tritium retention in next step devices and the requirements for mitigation and removal techniques. Plasma Phys Controlled Fusion. 2006;48:B189‐B199.
[52] Kukushkin A, Polevoi A, Pacher H, Pacher G, Pitts R. Physics requirements on fuel throughput in ITER. J Nucl Mater. 2011;415:S497‐S500.
[53] Sanchez J. Nuclear fusion as a massive, clean, and inexhaustible energy source for the second half of the century: brief history, status, and perspective. Energy Sci Eng. 2014;2:165‐176.
[54] Giancarli L, Abdou M, Campbell D, et al. Overview of the ITER TBM program. Fusion Eng Des. 2012;87:395‐402.
[55] Rosanvallon S, Torcy D, Chon J, Dammann A. Waste management plans for ITER. Fusion Eng Des. 2016;109‐111:1442‐1446.
[56] Ongena J, Koch R, Wolf R, Zohm H. Magnetic‐confinement fusion. Nat Phys. 2016;12:398‐410.
[57] Wang Z, Chen C, Song Y, et al. Deuterium retention removal in China reduced activation ferritic‐martensitic steels through thermal desorption and hydrogen isotope exchange. Fusion Eng Des. 2018;126:139‐146.
[58] Wang J, Yang S, Jiang C, Zhang Y, Lund P. Status and future strategies for concentrating solar power in China. Energy Sci Eng. 2017;5:100‐109.