首页 » 文章 » 文章详细信息
Ecology and Evolution Volume 9 ,Issue 10 ,2019-04-26
A population genetics perspective on the evolutionary histories of three clonal, endemic, and dominant grass species of the Qinghai–Tibet Plateau: Orinus (Poaceae)
ORIGINAL RESEARCH
Yuping Liu 1 , 2 , 3 AJ Harris 4 Qingbo Gao 5 Xu Su 1 , 2 , 3 Zhumei Ren 6
Show affiliations
DOI:10.1002/ece3.5186
Received 2019-02-20, accepted for publication 2019-03-26, Published 2019-03-26
PDF
摘要

Abstract We performed analyses of amplified fragment length polymorphism (AFLP) in order to characterize the evolutionary history of Orinus according to its population genetic structure, as well as to investigate putative hybrid origins of O. intermedius and to provide additional insights into relationships among species. The genus Orinus comprises three clonal grasses that are dominant species within xeric alpine grasslands of the Qinghai–Tibet Plateau (QTP). Here, we used eight selectively obtained primer pairs of EcoRI/MseI to perform amplifications in 231 individuals of Orinus representing 48 populations and all three species. We compared our resulting data to genetic models of hybridization using a Bayesian algorithm within NewHybrids software. We determined that genetic variation in Orinus was 56.65% within populations while the among‐species component was 30.04% using standard population genetics statistics. Nevertheless, we detected that species of Orinus were clustered into three highly distinct genetic groups corresponding to classic species identities. Our results suggest that there is some introgression among species. Thus, we tested explicit models of hybridization using a Bayesian approach within NewHybrids software. However, O. intermedius likely derives from a common ancestor with O. kokonoricus and is probably not the result of hybrid speciation between O. kokonoricus and O. thoroldii. We suspect that recent isolation of species of Orinus in allopatry via vicariance may explain the patterns in diversity that we observed, and this is corroborated by a Mantel test that showed significant positive correlation between geographic and genetic distance (r = 0.05, p < 0.05). Recent isolation may explain why Orinus differs from many other clonal species by exhibiting the highest diversity within populations rather than among them.

关键词

population biology;hybridization;genetic variation;amplified fragment length polymorphism;alpine grassland

授权许可

© 2019 Published by John Wiley & Sons Ltd.

图表
通讯作者

1. Xu Su.Key Laboratory of Medicinal Plant and Animal Resources of the Qinghai‐Tibet Plateau in Qinghai Province, School of Life Science, Qinghai Normal University, Xining, China;Key Laboratory of Physical Geography and Environmental Process in Qinghai Province, School of Life Science, Qinghai Normal University, Xining, China;Key Laboratory of Education Ministry of Environments and Resources in the Qinghai‐Tibet Plateau, School of Life Science, Qinghai Normal University, Xining, China.xusu8527972@126.com
2. Zhumei Ren.School of Life Science, Shanxi University, Taiyuan, China.xusu8527972@126.com

推荐引用方式

Yuping Liu,AJ Harris,Qingbo Gao,Xu Su,Zhumei Ren. A population genetics perspective on the evolutionary histories of three clonal, endemic, and dominant grass species of the Qinghai–Tibet Plateau: Orinus (Poaceae). Ecology and Evolution ,Vol.9, Issue 10(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Zuo, Y. J., Wen, J., Ma, J. S., & Zhou, S. L. (2015). Evolutionary radiation of the Panax bipinnatifidus species complex (Araliaceae) in the Sino‐Himalayan region of eastern Asia as inferred from AFLP analysis. Journal of Systematics and Evolution, 53, 210–220.
[2] Myers, N., Mittermeier, R. A., Mittermeier, C. G., Da Fonseca, G. A., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature, 403(6772), 853–858.
[3] Mayr, E. (1942). Systematics and the origin of species, from the viewpoint of a zoologist. New York, NY: Columbia University Press.
[4] Wilcox, B. P., Sorice, M. G., & Young, M. H. (2011). Dryland ecohydrology in the Anthropocene: Taking stock of human–ecological interactions. Geography Compass, 5(3), 112–127. https://doi.org/10.1111/j.1749-8198.2011.00413.x
[5] Li, A., & Ge, S. (2001). Genetic variation and clonal diversity of Psammochloa villosa (Poaceae) detected by ISSR markers. Annals of Botany, 87, 585–590. https://doi.org/10.1006/anbo.2001.1390
[6] Maréchaux, I., Rodrigues, A. S. L., & Charpentier, A. (2016). The value of coarse species range maps to inform local biodiversity conservation in a global context. Ecography, 40, 1166–1176. https://doi.org/10.1111/ecog.02598
[7] Cortés, A. J., Waeber, S., Lexer, C., Sedlacek, J., Wheeler, J. A., van Kleunen, M., … Karrenberg, S. (2014). Small‐scale patterns in snowmelt timing affect gene flow and the distribution of genetic diversity in the alpine dwarf shrub Salix herbacea. Heredity, 113, 233–239. https://doi.org/10.1038/hdy.2014.19
[8] Lewontin, R. C. (1972). Testing the theory of natural selection. Nature, 236, 181–182. https://doi.org/10.1038/236181a0
[9] Crutzen, P. J., & Stoermer, E. (2000). The “Anthropocene”. Global Change Newsletter, 41, 12–14.
[10] Cruickshank, T. E., & Hahn, M. W. (2014). Reanalysis suggests that genomic islands of speciation are due to reduced diversity, not reduced gene flow. Molecular Ecology, 23, 3133–3157. https://doi.org/10.1111/mec.12796
[11] Shi, Y. F. (2002). Characteristics of late Quaternary monsoonal glaciation on the Tibetan Plateau and in East Asia. Quaternary International, 97, 79–91. https://doi.org/10.1016/S1040-6182(02)00053-8
[12] Davies, T. J., Savolainen, V., Chase, M. W., Moat, J., & Barraclough, T. G. (2004). Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society of London B Biological Sciences, 271, 2195–2200. https://doi.org/10.1098/rspb.2004.2849
[13] Jia, D. R., Liu, T. L., Wang, L. Y., Zhou, D. W., & Liu, J. Q. (2011). Evolutionary history of an alpine shrub Hippophae tibetana (Elaeagnaceae): Allopatric divergence and regional expansion. Biological Journal of the Linnean Society, 102, 37–50. https://doi.org/10.1111/j.1095-8312.2010.01553.x
[14] Ge, X. J., Zhang, L. B., Yuan, Y. M., Hao, G., & Chiang, T. Y. (2005). Strong genetic differentiation of the East Himalayan Megacodon stylophorus (Gentianaceae) detected by inter‐simple sequence repeats (ISSR). Biodiversity Conservation, 14, 849–861. https://doi.org/10.1007/s10531-004-0655-6
[15] Wen, J., Zhang, J. Q., Nie, Z. L., Zhong, Y., & Sun, H. (2014). Evolutionary diversifications of plants on the Qinghai‐Tibetan Plateau. Frontiers in Genetics, 5, 4. https://doi.org/10.3389/fgene.2014.00004
[16] Gordon, S. P., Sloop, C. M., Davis, H. G., & Cushman, J. H. (2012). Population genetic diversity and structure of two rare vernal pool grasses in central California. Conservation Genetics, 13, 117–130. https://doi.org/10.1007/s10592-011-0269-y
[17] Li, Y., Wen, L., Dong, S., Liu, S., Wang, X., & Wu, Y. (2014). The interaction between poisonous plants and soil quality in response to grassland degradation in the alpine region of the Qinghai‐Tibetan Plateau. Plant Biology, 215, 809–819. https://doi.org/10.1007/s11258-014-0333-z
[18] Zhang, Q., Chiang, T. Y., George, M., Liu, J. Q., & Abbott, R. J. (2005). Phylogeography of the Qinghai‐Tibetan Plateau endemic Juniperus przewalskii (Cupressaceae) inferred from chloroplast DNA sequence variation. Molecular Evolution, 14, 3513–3524. https://doi.org/10.1111/j.1365-294X.2005.02677.x
[19] Jump, A. S., Marchant, R., & Peñuelas, J. (2009). Environmental change and the option value of genetic diversity. Trends Plant Science, 14, 51–58. https://doi.org/10.1016/j.tplants.2008.10.002
[20] Wang, W., Chen, L., Yang, P., Hou, L., He, C., Gu, Z., & Liu, Z. (2007). Assessing genetic diversity of populations of topmouth culter (Culter alburnus) in China using AFLP markers. Biochemical Systematics and Ecology, 35, 662–669. https://doi.org/10.1016/j.bse.2007.04.008
[21] Sedlacek, J., Wheeler, J. A., Cortés, A. J., Bossdorf, O., Hoch, G., Lexer, C., … Rixen, C. (2015). The response of the alpine dwarf shrub Salix herbacea to altered snowmelt timing: Lessons from a multi‐site transplant experiment. PLoS ONE, 10(4), e0122395. https://doi.org/10.1371/journal.pone.0122395
[22] Zheng, B., & Nat, R. (1998). On the problem of Quaternary glaciations, and the extent and patterns of Pleistocene ice cover in the Qinghai‐ Xizang (Tibet) Plateau. Quaternary International, 45, 109–122.
[23] Kaljund, K., & Jaaska, V. (2010). No loss of genetic diversity in small and isolated populations of Medicago sativa subsp. falcata. Biochemical Systematics and Ecology, 38, 510–520. https://doi.org/10.1016/j.bse.2010.05.007
[24] Shi, Y., Li, J., & Li, B. (1998). Uplift and environmental changes of Qinghai‐Tibetan Plateau in the late Cenozoic. Guangzhou, China: Guangdong Science and Technology Press.
[25] Soreng, R. J., Peterson, P. M., Romaschenko, K., Davidse, G., Zuloaga, F. O., Judziewicz, E. J., … Morrone, O. (2017). A worldwide phylogenetic classification of the Poaceae (Gramineae) II: An update and a comparison of two 2015 classifications. Journal of Systematics and Evolution, 55, 259–290. https://doi.org/10.1111/jse.12262
[26] Garnhart, N. (2001). Binthere V1.0, a program to bin AFLP data. Durham, NH: University of New Hampshire.
[27] Zhou, S. L., & Qian, P. (2003). Matrix Generator (MG): A program for creating 0/1 matrix from DNA fragments. Acta Botanica Sinica, 45, 766–769.
[28] Ma, Z., Liu, H., Mi, Z., Zhang, Z., Wang, Y., Xu, W., … He, J.‐S. (2017). Climate warming reduces the temporal stability of plant community biomass production. Nature Communications, 8, 15378. https://doi.org/10.1038/ncomms15378
[29] Madriñán, S., Cortés, A. J., & Richardson, J. E. (2013). Páramo is the world's fastest evolving and coolest biodiversity hotspot. Frontiers in Genetics, 4, 192. https://doi.org/10.3389/fgene.2013.00192
[30] Liu, Y. P., Su, X., He, Y. H., Han, L. M., Huang, Y. Y., & Wang, Z. Z. (2015). Evolutionary history of Orinus thoroldii (Poaceae), endemic to the western Qinghai‐Tibetan Plateau in China. Biochemical Systematics and Ecology, 59, 159–167. https://doi.org/10.1016/j.bse.2015.01.014
[31] Su, X., Wu, G. L., Li, L. L., & Liu, J. Q. (2015). Species delimitation in plants using the Qinghai‐Tibetan Plateau endemic Orinus (Poaceae: Tridentinae) as an example. Annals of Botany, 116, 35–48.
[32] Beger, M., McGowan, J., Treml, E., Green, A., White, A., Wolff, N., … Possingham, H. (2015). Integrating regional conservation priorities for multiple objectives into national policy. Nature Communications, 6, 8208. https://doi.org/10.1038/ncomms9208
[33] Kimura, M., & Crow, J. F. (1964). The number of alleles that can be maintained in a finite population. Genetics, 49, 725–738.
[34] Su, X., Yue, W., & Liu, J. Q. (2013). Germplasm collection and preservation of Orinus (Poaceae) in the Qinghai‐Tibet Plateau. Plant Diversity Research, 35, 343–347.
[35] Bowman, W. D. (2000). Biotic controls over ecosystem response to environmental change in alpine tundra of the Rocky Mountains. Aliso, 29, 396–400. https://doi.org/10.1579/0044-7447-29.7.396
[36] Karron, J. (1987). A comparison of levels of genetic polymorphism and self‐compatibility in geographically restricted and widespread plant congeners. Evolutionary Ecology, 1, 47–58. https://doi.org/10.1007/BF02067268
[37] Rohlf, F. (2000). NTSYS‐pc version 2.1: Numerical Taxonomy and Multivariance Analysis System.
[38] Cai, L. B. (2004). Two new recorded species of Orinus from Qinghai Province. Bulletin of Botanical Research, 24, 394–395.
[39] Kropf, M., Comes, H. P., & Kadereit, J. W. (2006). Long‐distance dispersal vs vicariance: The origin and genetic diversity of alpine plants in the Spanish Sierra Nevada. New Phytologist, 172, 169–184. https://doi.org/10.1111/j.1469-8137.2006.01795.x
[40] Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: Application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.
[41] Risser, P. (1987). Landscape ecology: State of the art. In (Ed.), Landscape heterogeneity and disturbance (pp. 3–14). New York, NY: Springer.
[42] Feng, C., Tong, C., Zhang, R., Li, G., Wanghe, K., Tang, Y., … Zhao, K. (2017). Biodiversity and distribution patterns of Triplophysa species in the northeastern margin of the Tibetan Plateau. Biodiversity Science, 25, 53–61. https://doi.org/10.17520/biods.2016259
[43] Hughes, C. E., & Atchison, G. W. (2015). The ubiquity of alpine plant radiations: From the Andes to the Hengduan Mountains. New Phytologist, 207, 275–282. https://doi.org/10.1111/nph.13230
[44] Körner, C. (2004). Mountain biodiversity, its causes and function. Ambio, 13, 11–17.
[45] Hubisz, M. J., Falush, D., Stephens, M., & Pritchard, J. K. (2009). Inferring weak population structure with the assistance of sample group information. Molecular Ecology Resources, 9, 1322–1332. https://doi.org/10.1111/j.1755-0998.2009.02591.x
[46] Su, X., Liu, Y. P., Wu, G. L., Luo, W. C., & Liu, J. Q. (2017). A taxonomic revision of Orinus (Poaceae) with a new species, O. intermedius, from the Qinghai‐Tibet Plateau. Novon, 25, 206–213.
[47] Falush, D., Stephens, M., & Pritchard, J. K. (2007). Inference of population structure using multilocus genotype data: Dominant markers and null alleles. Molecular Ecology Notes, 7, 574–578. https://doi.org/10.1111/j.1471-8286.2007.01758.x
[48] Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23, 254–267. https://doi.org/10.1093/molbev/msj030
[49] Yeh, F., Yang, R., & Boyle, T. (1999). POPGENE: Microsoft Windows‐based freeware for population genetic analysis. Version 1.31. Edmonton, Canada: University of Alberta.
[50] Yi, S. H., Zhou, Z. Y., Ren, S. L., Xu, M., Qin, Y., Chen, S. Y., & Ye, B. S. (2011). Effects of permafrost degradation on alpine grassland in a semi‐arid basin on the Qinghai‐Tibetan Plateau. Environmental Research Letters, 6, 45403–45409. https://doi.org/10.1088/1748-9326/6/4/045403
[51] Sedlacek, J., Cortés, A. J., Wheeler, J., Bossdorf, O., Hoch, G., Klápště, J., … van Kleunen, M. (2016). Evolutionary potential in the Alpine: Trait heritabilities and performance variation of the dwarf willow Salix herbacea from different elevations and microhabitats. Ecology and Evolution, 6, 3940–3952.
[52] Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin (version 3.0): An integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50. https://doi.org/10.1177/117693430500100003
[53] Yu, F., Dong, M., & Krüsi, B. (2004). Clonal integration helps Psammochloa villosa survive sand burial in an inland dune. New Phytologist, 162(3), 697–704. https://doi.org/10.1111/j.1469-8137.2004.01073.x
[54] Liu, J. M., Wang, L., Geng, Y. P., Wang, Q. B., Luo, L. J., & Zhong, Y. (2006). Genetic diversity and population structure of Lamiophlomis rotata (Lamiaceae), an endemic species of Qinghai–Tibet Plateau. Genetica, 128, 385–394. https://doi.org/10.1007/s10709-006-7517-y
[55] Liu, J., Möller, M., Provan, J., Gao, L. M., Poudel, R. C., & Li, D. Z. (2013). Geological and ecological factors drive cryptic speciation of yews in a biodiversity hotspot. New Phytologist, 199, 1093–1108. https://doi.org/10.1111/nph.12336
[56] Liu, J. Q., Wang, Y. J., Wang, A. L., Hideaki, O., & Abbott, R. J. (2006). Radiation and diversification within the Ligularia‐Cremanthodium‐Parasenecio complex (Asteraceae) triggered by uplift of the Qinghai‐Tibetan Plateau. Molecular Phylogenetics and Evolution, 38, 31–49. https://doi.org/10.1016/j.ympev.2005.09.010
[57] Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Molecular Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
[58] Ellstrand, N. C., & Roose, M. L. (1987). Patterns of genotypic diversity in clonal plant species. American Journal of Botany, 74, 123–131. https://doi.org/10.1002/j.1537-2197.1987.tb08586.x
[59] Ehrich, D. (2006). AFLPDAT: A collection of R functions for convenient handling of AFLP data. Molecular Ecology Notes, 6, 603–604. https://doi.org/10.1111/j.1471-8286.2006.01380.x
[60] Yap, I., & Nelson, R. (1996). Winboot: A program for performing bootstrap analysis of binary data to determine the confidence limits of UPGMA‐based dendrograms. International Rice Research Institute Discussion Paper Series, 14, 1–22.
[61] Yang, M. X., Wang, S. L., Yao, T. D., Gou, X. H., Lu, A. X., & Guo, X. J. (2004). Desertification and its relationship with permafrost degradation in Qinghai‐Xizang (Tibet) Plateau. Cold Region Science and Technology, 39, 47–53. https://doi.org/10.1016/j.coldregions.2004.01.002
[62] Hu, Q. J., Peng, H. C., Bi, H., Lu, Z. Q., Wan, D. S., Wang, Q., & Mao, K. S. (2016). Genetic homogenization of the nuclear ITS loci across two morphologically distinct gentians in their overlapping distributions in the Qinghai‐Tibet Plateau. Scientific Reports, 6, 34244. https://doi.org/10.1038/srep34244
[63] Yang, F. S., Li, Y. F., Ding, X., & Wang, X. Q. (2008). Extensive population expansion of Pedicularis longiflora (Orobanchaceae) on the Qinghai‐Tibetan Plateau and its correlation with the Quaternary climate change. Molecular Ecology, 17, 5135–5145.
[64] Hedrick, P. (2001). Conservation genetics: Where are we now? Trends in Ecology and Evolution, 16, 629–636. https://doi.org/10.1016/s0169-5347(01)02282-0
[65] Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.
[66] Rahimmalek, M., Tabatabaei, B. E. S., Arzani, A., & Etemadi, N. (2009). Assessment of genetic diversity among and within Achillea species using amplified fragment length polymorphism (AFLP). Biochemical Systematics and Ecology, 37, 354–361. https://doi.org/10.1016/j.bse.2009.06.002
[67] Liu, Y. P., Ren, Z. M., Harris, AJ, Peterson, P. M., Wen, J., & Su, X. (2018). Phylogeography of Orinus (Poaceae), a dominant grass genus on the Qinghai‐Tibet Plateau. Botanical Journal of the Linnean Society, 186, 202–223. https://doi.org/10.1093/botlinnean/box091
[68] Harris, AJ, Ickert‐Bond, S., & Rodríguez, A. (2018). Long distance dispersal in the assembly of floras: A review of progress and prospects in North America. Journal of Systematics and Evolution, 56, 430–448.
[69] Ren, G. P., Conti, E., & Salamin, N. (2015). Phylogeny and biogeography of Primula sect. Armerina: Implications for plant evolution under climate change and the uplift of the Qinghai‐Tibet Plateau. BMC Evolutionary Biology, 15, 161. https://doi.org/10.1186/s12862-015-0445-7
[70] Han, W. X., Fang, X. M., & Berger, A. (2012). Tibet forcing of mid‐Pleistocene synchronous enhancement of East Asian winter and summer monsoons revealed by Chinese loess record. Quaternary Research, 78, 174–184. https://doi.org/10.1016/j.yqres.2012.05.001
[71] Liu, J. Q. (2004). Uniformity of karyotypes in Ligularia (Asteraceae: Senecioneae), a highly diversified genus of the eastern Qinghai–Tibet Plateau highlands and adjacent areas. Botanical Journal of the Linnean Society, 144, 329–342. https://doi.org/10.1111/j.1095-8339.2003.00225.x
[72] Liu, J. Q., Gao, T. G., Chen, Z. D., & Lu, A. M. (2002). Molecular phylogeny and biogeography of the Qinghai‐Tibet Plateau endemic Nannoglottis (Asteraceae). Molecular Phylogenetics and Evolution, 23, 307–325. https://doi.org/10.1016/S1055-7903(02)00039-8
[73] Anderson, E. C., & Thompson, E. A. (2002). A model‐based method for identifying species hybrids using multilocus genetic data. Genetics, 160(3), 1217–1229.
[74] Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf material. Phytochemical Bulletin, 19, 11–15.
[75] Wu, Y. (2008). The vascular plants and their eco‐geographical distribution of the Qinghai‐Tibetan Plateau. Beijing, China: Science Press.
[76] de Witte, L. C., Armbruster, G. F. J., Gielly, L., Taberlet, P., & Stöcklin, J. (2012). AFLP markers reveal high clonal diversity and extreme longevity in four key arctic‐alpine species. Molecular Ecology, 21, 1081–1097. https://doi.org/10.1111/j.1365-294X.2011.05326.x
[77] Xue, X., Wang, Y., Korpelainen, H., & Li, C. (2005). Assessment of AFLP‐based genetic variation in the populations of Picea asperata. Silvae Genetica, 54, 24–30. https://doi.org/10.1515/sg-2005-0004
[78] Wu, S. G., Yang, Y. P., & Fei, Y. (1995). On the flora of the alpine region in the Qinghai‐Xizang (Tibet) plateau. Acta Botanica Yunnanica, 17, 233–250.
[79] Han, M., Brierley, G. J., Cullum, C., & Li, X. (2016). Climate, vegetation and human land‐use interactions on the Qinghai–Tibet Plateau through the Holocene. In , X. Li, C. Cullum, & J. Gao (Eds.), Landscape and ecosystem diversity, dynamics and management in the Yellow River Source Zone (pp. 253–274). Berlin, Germany: Springer.
[80] Earl, D. A., & von, H. B. M. (2012). Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetic Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7
[81] Nei, M., & Li, W. H. (1979). Mathematical model for studying genetical variation in terms of restriction endonucleases. Proceedings of the National Academy of Science of the United States of America, 76, 5269–5273.
[82] Willis, K. J., Bennett, K. D., & Birks, H. J. B. (2009). Variability in thermal and UV‐B energy fluxes through time and their influence on plant diversity and speciation. Journal of Biogeography, 36, 1630–1644. https://doi.org/10.1111/j.1365-2699.2009.02102.x
[83] Hamrick, J., & Godt, M. (1989). Allozyme diversity in plant species. In , M. Clegg, A. Kahler, & B. Weir (Eds.), Plant population genetics, breeding and genetic resources (pp. 43–63). Sunderland, MA: Sinauer Associates Publishers.
[84] Peterson, P. M., Romaschenko, K., & Arrieta, Y. H. (2016). A molecular phylogeny and classification of the Cynodonteae (Poaceae: Chloridoideae) with four new genera: Orthacanthus, Triplasiella, Tripogonella, and Zaqiqah; three new subtribes: Dactylocteniinae, Orininae, and Zaqiqahinae; and a subgeneric classification of Distichlis. Taxon, 65, 1263–1287.
[85] Liu, J., Luo, Y. H., Li, D. Z., & Gao, L. M. (2017). Evolution and maintenance mechanisms of plant diversity in the Qinghai‐Tibet Plateau and adjacent regions: Retrospect and prospect. Biodiversity Science, 25, 163–174. https://doi.org/10.17520/biods.2016293
[86] Guo, Z. T., Ruddiman, W. F., Hao, Q. Z., Wu, H. B., Qiao, Y. S., Zhu, R. X., … Liu, T. S. (2002). Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature, 416, 159–163.
[87] Peakall, R., & Smouse, P. (2012). GenAIEx 6.5: Genetic analysis in Excel: Population genetic software for teaching and research – An update. Bioinformatics, 28, 2537–2539.
[88] Pluess, A. R., & Stöcklin, J. (2004). Population genetic diversity of the clonal plant Geum reptans (Rosaceae) in the Swiss Alps. American Journal of Botany, 91, 2013–2021. https://doi.org/10.3732/ajb.91.12.2013
文献评价指标
浏览 13次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次
相关文章