首页 » 文章 » 文章详细信息
Ecology and Evolution Volume 9 ,Issue 10 ,2019-04-29
Genetic diversity estimation of Yunnan indigenous goat breeds using microsatellite markers
Guang‐Xin E 1 , 2 Qiong‐Hua Hong 3 Yong‐Ju Zhao 1 Yue‐Hui Ma 4 Ming‐Xing Chu 4 Lan Zhu 4 Yong‐Fu Huang 1
Show affiliations
Received 2018-09-20, accepted for publication 2019-03-28, Published 2019-03-28

Abstract Background To assess the genetic diversity of seven Yunnan indigenous goat populations (Fengqing hornless goat, Mile red‐bone goat, Longling goat, Ninglang black goat, Black‐bone goat, Yunling black goat, and Zhaotong goat), their population structures were investigated using 20 microsatellite markers. Results The results indicated that the genetic diversity of these goats was rich. The observed heterozygosity ranged from 0.4667 ± 0.0243 to 0.5793 ± 0.0230, and the mean number of alleles ranged from 4.80 ± 1.61 and 4.80 ± 1.64 to 6.20 ± 2.93. The population structure analysis showed that these seven goat populations were separated into two clusters, consistent with the results from phylogenetic networks, pairwise differences, and STRUCTURE analyses. We speculate that this may have been caused by natural geographical isolation, human migration and economic and cultural exchanges. We suggest removing CSRD247 and ILSTS005, two loci identified to be under positive selection in the present study, from the microsatellite evaluation system of goats. Conclusions The present study may provide a scientific basis for the conservation and utilization of Yunnan indigenous goats.


Yunnan;microsatellite;indigenous goat;diversity;China


© 2019 Published by John Wiley & Sons Ltd.


Yong‐Fu Huang.College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Centre for Herbivores Resource Protection and Utilization, Southwest University, Chongqing, China.H67738337@swu.edu.cn


Guang‐Xin E,Qiong‐Hua Hong,Yong‐Ju Zhao,Yue‐Hui Ma,Ming‐Xing Chu,Lan Zhu,Yong‐Fu Huang. Genetic diversity estimation of Yunnan indigenous goat breeds using microsatellite markers. Ecology and Evolution ,Vol.9, Issue 10(2019)



[1] Yuan, J. H., Cheng, F. Y., & Zhou, S. L. (2012). Genetic structure of the tree Peony (Paeonia rockii) and the Qinling Mountains as a geographic barrier driving the fragmentation of a large population. PLoS ONE, 7, e34955. https://doi.org/10.1371/journal.pone.0034955
[2] Felsenstein, J. (2005). PHYLIP (Phylogeny Inference Package) version 3.6 Distributed by the author. Seattle, WA: Department of Genome Sciences, University of Washington. Retrieved from http://evolution.genetics.washington.edu/phylip/getme.html
[3] Goudet, J. F. S. T. A. T. (1995). (Version 1.2): A computer program to calculate F‐statistic. Journal of Heredity, 86, 485–486.
[4] Zhao, E., Yu, Q., Zhang, N., Kong, D., & Zhao, Y. (2013). Mitochondrial DNA diversity and the origin of Chinese indigenous sheep. Tropical Animal Health and Production, 45(8), 1715–1722. https://doi.org/10.1007/s11250-013-0420-5
[5] Gao, X. (2015). On the age of Homo erectus yuanmounensis and related issues. ACTA Anthropologica Sinica, 34(4), 442–450.
[6] Wei, C., Lu, J., Xu, L., Liu, G., Wang, Z., Zhao, F., … Liu, C. (2014). Genetic structure of Chinese indigenous goats and the special geographical structure in the Southwest China as a geographic barrier driving the fragmentation of a large population. PLoS ONE, 9(4), e94435. https://doi.org/10.1371/journal.pone.0094435
[7] FAO. (2011). Guideline for molecular genetic characterisation of animal genetic resources. FAO Animal Production and Health Commission on Genetic Resources for Food and Agriculture. Food and Agriculture Organization of the United Nations.
[8] Gordo, D. G. M., Espigolan, R., Bresolin, T., Fernandes Júnior, G. A., Magalhães, A. F. B., Braz, C. U., … Albuquerque, L. G. (2018). Genetic analysis of carcass and meat quality traits in Nelore cattle. Journal of Animal Science, 96(6), 3558–3564. https://doi.org/10.1093/jas/sky228
[9] Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetics Resources, 4(2), 359–361. https://doi.org/10.1007/s12686-011-9548-7
[10] Wu, G. S., Yao, Y. G., Qu, K. X., Ding, Z. L., Li, H., Palanichamy, M. G., … Zhang, Y. P. (2007). Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology, 8(11), R245.
[11] Sambrook, J., & Russell, D. (2001). Molecular cloning: A laboratory manual (M) (3rd ed.). New York, NY: Clod Spring Harbor Laboratory Press.
[12] Excoffier, L., & Lischer, H. E. L. (2010). Arlequin 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.
[13] Jin, L., Zhang, M., Ma, J., Zhang, J., Zhou, C., Liu, Y., … Li, X. (2012). Mitochondrial DNA evidence indicates the local origin of domestic pigs in the upstream region of the Yangtze River. PLoS ONE, 7(12), e51649. https://doi.org/10.1371/journal.pone.0051649
[14] Yao, H. T., Deng, C. L., & Zhu, R. X. (2005). Geochronological research into the yuanmou homo erectus‐with a discussion of the age of the early Pleistocene early human in China. Advances in Earth Science, 20(11), 1191–1198.
[15] Kloepper, T. H., & Huson, D. H. (2008). Drawing explicit phylogenetic networks and their integration into SplitsTree. BMC Evolutionary Biology, 8, 22. https://doi.org/10.1186/1471-2148-8-22
[16] Liu, Y. P., Wu, G. S., Yao, Y. G., Miao, Y. W., Luikart, G., Baig, M., … Zhang, Y. P. (2006). Multiple maternal origins of chickens: Out of the Asian jungles. Molecular Phylogenetics and Evolution, 38, 12–19. https://doi.org/10.1016/j.ympev.2005.09.014
[17] Reynolds, J., Weir, B. S., & Cockerham, C. C. (1983). Estimation of the coancestry coefficient: Basis for a short‐term genetic distance. Genetics, 105(3), 767–779.
[18] Rosenberg, N. A. (2004). DISTRUCT: A program for the graphical display of population structure. Molecular Ecology Notes, 4, 137–138.
[19] Liu, Y. L., Cheng, M., Jiang, M. F., Wang, Y., Wang, J., & Fu, X. H. (2014). Genetic diversity analysis of eight indigenous goat breeds (groups) in China using AFLP markers. Genetika, 50(12), 1440–1447.
[20] Ilie, D. E., Kusza, S., Sauer, M., & Gavojdian, D. (2018). Genetic characterization of indigenous goat breeds in Romania and Hungary with a special focus on genetic resistance to mastitis and gastrointestinal parasitism based on 40 SNPs. PLoS ONE, 13(5), e0197051. https://doi.org/10.1371/journal.pone.0197051
[21] Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: Cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23, 1801–1806. https://doi.org/10.1093/bioinformatics/btm233
[22] Liu, Q., Chen, P., He, K., Kilpatrick, C. W., Liu, S. Y., Yu, F. H., & Jiang, X. L. (2012). Phylogeographic study of Apodemus ilex (Rodentia: Muridae) in southwest China. PLoS ONE, 7(2), e31453. https://doi.org/10.1371/journal.pone.0031453
[23] Gvozdanović, K., Margeta, V., Margeta, P., Djurkin Kušec, I., Galović, D., Dovč, P., & Kušec, G. (2018). Genetic diversity of autochthonous pig breeds analyzed by microsatellite markers and mitochondrial DNA D‐loop sequence polymorphism. Animal Biotechnology, 23, 1–10. https://doi.org/10.1080/10495398.2018
[24] E, G.‐X., Zhao, Y. J., Chen, L. P., Ma, Y. H., Chu, M. X., Li, X. L., … Huang, Y. F. (2018). Genetic diversity of the Chinese goat in the littoral zone of the Yangtze River as assessed by microsatellite and mtDNA. Ecology and Evolution, 8(10), 5111–5123. https://doi.org/10.1002/ece3.4100
[25] Su, A. L., Lan, X. W., Huang, M. B., Nong, W., Li, Q. Q., & Leng, J. (2017). Microsatellite analysis of genetic diversity in the Tupaia belangeri yaoshanensis. Biomedical Reports, 7(4), 349–352. https://doi.org/10.3892/br.2017.969
[26] Granevitze, Z., Hillel, J., Chen, G. H., Cuc, N. T. K., Feldman, M., Eding, H., & Weigend, S. (2007). Genetic diversity within chicken populations from different continents and management histories. Animal Genetics, 2007(38), 576–583. https://doi.org/10.1111/j.1365-2052.2007.01650.x
[27] China National Commission of Animal Genetic Resources (2011). Animal genetic resources in China: Sheep and goats. Beijing, China: Chinese Agricultural Press.
[28] Câmara, T. S., Nunes, J. F., Diniz, F. M., Silva, G. R., & Araújo, A. M. (2017). Genetic diversity and relatedness between Canindé and British Alpine goat breeds in Northeastern Brazil accessed by microsatellite markers. Genetics and Molecular Research, 16(1). https://doi.org/10.4238/gmr16019569
[29] Liu, G. W., Wang, F., & Zhang, X. L. (2016). Discussion on relationship between the academic thought of Wu Pei‐heng Fu Yang and geographic & climate in Yun'nan. Guiding Journal of Traditional Chinese Medicine and Pharmacy, 22(19), 13–15.
[30] Tarekegn, G. M., Tesfaye, K., Mwai, O. A., Djikeng, A., Dessie, T., Birungi, J., … Mwacharo, J. M. (2018). Mitochondrial DNA variation reveals maternal origins and demographic dynamics of Ethiopian indigenous goats. Ecology and Evolution, 8(3), 1543–1553. https://doi.org/10.1002/ece3.3710
[31] Rasigade, J. P., Hollandt, F., & Wirth, T. (2018). Genes under positive selection in the core genome of pathogenic Bacillus cereus group members. Infection, Genetics and Evolution, 1348(18), 55–64. https://doi.org/10.1016/j.meegid.2018.07.009
[32] Lai, Y. (2012). Research on biodiversity wisdom of Yi nationality and its agricultural production practice (D). Nanjing Agricultural University.
[33] Wang, G. H., Hao, R. C., & Yang, G. Z. (2016). Analysis of mtDNA genetics diversity and cluster of Yunnan goat. Genomics and Applied Biology, 35(9), 2361–2366.
[34] Pu, L. C. (2010). On the inheritance model of the minority intangible cultural heritages of Yunnan Province. Journal of Yunnan Nationalities University (Social Science), 27(1), 46–50.
[35] Pitarch, J. L., Raksa, H. C., Arnal, M. C., Revilla, M., Martínez, D., Fernández de Luco, D., … Acín, C. (2018). Low sequence diversity of the prion protein gene (PRNP) in wild deer and goat species from Spain. Veterinary Research, 49(1), 33. https://doi.org/10.1186/s13567-018-0528-8
[36] Wang, G. Z., Chen, S. S., Chao, T. L., Ji, Z. B., Hou, L., Qin, Z. J., & Wang, J. M. (2017). Analysis of genetic diversity of Chinese dairy goats via microsatellite markers. Journal of Animal Science, 95(5), 2304–2313. https://doi.org/10.2527/jas.2016.1029
[37] Park, S. (2008). Excel microsatellite toolkit. Version 3.1.1. 2008. Animal Genomics Lab website. Dublin, Ireland: University College.
[38] Onzima, R. B., Upadhyay, M. R., Mukiibi, R., Kanis, E., Groenen, M. A. M., & Crooijmans, R. P. M. A. (2018). Genome‐wide population structure and admixture analysis reveals weak differentiation among Ugandan goat breeds. Animal Genetics, 49(1), 59–70. https://doi.org/10.1111/age.12631
[39] Raymond, M., & Rousset, F. (1995). GENEPOP (Version 1.2): Population genetics software for exact tests and ecumenicism. Journal of Heredity, 86(3), 248–249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
[40] Lai, S., Chen, S., Liu, Y., & Yao, Y. (2007). Mitochondrial DNA sequence diversity and origin of Chinese domestic yak. Animal Genetics, 38, 77–80. https://doi.org/10.1111/j.1365-2052.2007.01650.x
[41] Nicoloso, L., Bomba, L., Colli, L., Negrini, R., Milanesi, M., Mazza, R., … Italian Goat Consortium. (2015). Genetic diversity of Italian goat breeds assessed with a medium‐density SNP chip. Genetics Selection Evolution, 47(1), 62. https://doi.org/10.1186/s12711-015-0140-6
[42] Gowane, G. R., Akram, N., Misra, S. S., Prakash, V., & Kumar, A. (2018). Genetic diversity of Cahi DRB and DQB genes of caprine MHC class II in Sirohi goat. Journal of Genetics, 97(2), 483–492. https://doi.org/10.1007/s12041-018-0939-3
浏览 12次
下载全文 1次
评分次数 0次
用户评分 0.0分
分享 0次