首页 » 文章 » 文章详细信息
Journal of Advances in Modeling Earth Systems Volume 11 ,Issue 4 ,2019-04-15
A Cloud Top Radiative Cooling Model Coupled With CLUBB in the Community Atmosphere Model: Description and Simulation of Low Clouds
Research Articles
Zhun Guo 1 Minghuai Wang 2 Vincent E. Larson 3 Tianjun Zhou 4
Show affiliations
DOI:10.1029/2018MS001505
Received 2018-09-25, accepted for publication 2019-03-20, Published 2019-03-20
PDF
摘要

Abstract In this study, a higher‐order closure scheme known as Cloud Layers Unified By Binormals (CLUBB) is coupled with a cloud top radiative cooling scheme (RAD). The cloud top radiative cooling scheme treats the buoyancy flux generated near the top of the boundary layer which helps the CLUBB scheme to better represent the radiation‐turbulence interaction on the condition of coarse vertical resolution. CLUBB with RAD is found to improve subtropical low‐cloud simulations, and the improvement is particularly evident for nocturnal stratocumulus. The improvements are caused by the stronger and more symmetric vertical turbulent mixing in the boundary layer, as CLUBB with RAD increases the variance of vertical velocity and vertical turbulent transports and reduces the skewness of vertical velocity by enhancing the radiative cooling effects and buoyancy fluxes at the cloud layer. The pumping effect related to the stronger vertical turbulent transports further cools and dries the lower boundary layer, which increases the local surface heating fluxes and further improves the low‐cloud simulations.

关键词

higher‐order closure scheme;cloud top radiative cooling;buoyancy flux;low cloud

授权许可

©2019. American Geophysical Union. All Rights Reserved.

图表
通讯作者

1. Zhun Guo.Climate Change Research Center, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China.guozhun@lasg.iap.ac.cn
2. Minghuai Wang.Institute for Climate and Global Change Research, School of Atmospheric Sciences, Nanjing University, Nanjing, China.guozhun@lasg.iap.ac.cn

推荐引用方式

Zhun Guo,Minghuai Wang,Vincent E. Larson,Tianjun Zhou. A Cloud Top Radiative Cooling Model Coupled With CLUBB in the Community Atmosphere Model: Description and Simulation of Low Clouds. Journal of Advances in Modeling Earth Systems ,Vol.11, Issue 4(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] Lilly, D. K. (1988). Cirrus outflow dynamics. Journal of the Atmospheric Sciences, 45(10), 1594–1605. https://doi.org/10.1175/1520‐0469(1988)045<1594:COD>2.0.CO;2
[2] Xiao, H., Gustafson, W. I., & Wang, H. (2014). Impact of subgrid‐scale radiative heating variability on the stratocumulus‐to‐trade cumulus transition in climate models. Journal of Geophysical Research: Atmospheres, 119, 4192–4203. https://doi.org/10.1002/2013JD020999
[3] Guo, Z., Wang, M., Qian, Y., Larson, V. E., Ghan, S., Ovchinnikov, M., A. Bogenschutz, P., Gettelman, A., & Zhou, T. (2015). Parametric behaviors of CLUBB in simulations of low clouds in the Community Atmosphere Model (CAM). Journal of Advances in Modeling Earth Systems, 7, 1005–1025. https://doi.org/10.1002/2014MS000405
[4] Bougeault, P. (1981). Modeling the trade‐wind cumulus boundary layer. Part II: A high‐order one‐dimensional model. Journal of the Atmospheric Sciences, 38(11), 2429–2439. https://doi.org/10.1175/1520‐0469(1981)038<2429:MTTWCB>2.0.CO;2
[5] Guo, H., Golaz, J. C., Donner, L. J., & Wyman, B. (2015). CLUBB as a unified cloud parameterization: Opportunities and challenges. Geophysical Research Letters, 42, 4540–4547. https://doi.org/10.1002/2015GL063672
[6] Guo, H., Golaz, J.‐C., Donner, L. J., Ginoux, P., & Hemler, R. S. (2014). Multivariate probability density functions with dynamics in the GFDL atmospheric general circulation model: Global tests. Journal of Climate, 27(5), 2087–2108. https://doi.org/10.1175/JCLI‐D‐13‐00347.1
[7] Larson, V. E., Schanen, D. P., Wang, M., Ovchinnikov, M., & Ghan, S. (2012). PDF parameterization of boundary layer clouds in models with horizontal grid spacings from 2 to 16 km. Monthly Weather Review, 140(1), 285–306. https://doi.org/10.1175/MWR‐D‐10‐05059.1
[8] Larson, V. E., Golaz, J.‐C., & Cotton, W. R. (2002). Small‐scale and mesoscale variability in cloudy boundary layers: Joint probability density functions. Journal of Atmospheric Sciences, 59(24), 3519–3539. https://doi.org/10.1175/1520‐0469(2002)059<3519:SSAMVI>2.0.CO;2
[9] Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Schanen, D. P., Meyer, N. R., & Craig, C. (2012). Unified parameterization of the planetary boundary layer and shallow convection with a higher‐order turbulence closure in the Community Atmosphere Model: Single column experiments. Geoscientific Model Development Discussion, 5(3), 1743–1780. https://doi.org/10.5194/gmdd‐5‐1743‐2012
[10] Bogenschutz, P. A., Gettelman, A., Morrison, H., Larson, V. E., Craig, C., & Schanen, D. P. (2013). Higher‐order turbulence closure and its impact on climate simulations in the Community Atmosphere Model. Journal of Climate, 26(23), 9655–9676. https://doi.org/10.1175/JCLI‐D‐13‐00075.1
[11] Bretherton, C. S., & wyant, M. C. (1997). Moisture transport, lower‐tropospheric stability, and decoupling of cloud‐topped boundary layers. Journal of the Atmospheric Sciences, 54(1), 148–167. https://doi.org/10.1175/1520‐0469(1997)054<0148:MTLTSA>2.0.CO;2
[12] Stephens, G. L. (1978). Radiation profiles in extended water clouds. II: Parameterization schemes. Journal of Atmospheric Sciences, 35(11), 2123–2132. https://doi.org/10.1175/1520‐0469(1978)035<2123:RPIEWC>2.0.CO;2
[13] Bretherton, C. S., & Park, S. (2009). A new moist turbulence parameterization in the Community Atmosphere Model. Journal of Climate, 22(12), 3422–3448. https://doi.org/10.1175/2008JCLI2556.1
[14] Stevens, B., Lenschow, D. H., Vali, G., Gerber, H., Bandy, A., Blomquist, B., Brenguier, J. L., Bretherton, C. S., Burnet, F., Campos, T., & Chai, S. (2003). Supplement to Dynamics and Chemistry of Marine Stratocumulus‐DYCOMS‐II. Bulletin of the American Meteorological Society, 84(5), 593–593. https://doi.org/10.1175/BAMS‐84‐5‐Stevens
[15] Stephens, G. L. (2005). Cloud feedbacks in the climate system: A critical review. Journal of Climate, 18(2), 237–273. https://doi.org/10.1175/JCLI‐3243.1
[16] Moeng, C.‐H., & Rotunno, R. (1990). Vertical‐velocity skewness in the buoyancy‐driven boundary layer. Journal of Atmospheric Sciences, 47(9), 1149–1162. https://doi.org/10.1175/1520‐0469(1990)047<1149:VVSITB>2.0.CO;2
[17] Larson, V. E., & Golaz, J.‐C. (2005). Using probability density functions to derive consistent closure relationships among higher‐order moments. Monthly Weather Review, 133(4), 1023–1042. https://doi.org/10.1175/MWR2902.1
[18] Stevens, B., Moeng, C. H., Ackerman, A. S., Bretherton, C. S., Chlond, A., de Roode, S., Edwards, J., Golaz, J. C., Jiang, H., Khairoutdinov, M., Kirkpatrick, M. P., Lewellen, D. C., Lock, A., Müller, F., Stevens, D. E., Whelan, E., & Zhu, P. (2005). Evaluation of large‐eddy simulations via observations of nocturnal marine stratocumulus. Monthly Weather Review, 133(6), 1443–1462. https://doi.org/10.1175/MWR2930.1
[19] Cheng, A., & Xu, K. M. (2013). Diurnal variability of low clouds in the Southeast Pacific simulated by a multiscale modeling framework model. Journal of Geophysical Research: Atmospheres, 118(16), 9191–9208. https://doi.org/10.1002/jgrd.50683
[20] Lappen, C.‐L., & Randall, D. A. (2001). Toward a unified parameterization of the boundary layer and moist convection. Part I: A new type of mass‐flux model. Journal of the Atmospheric Sciences, 58(15), 2021–2036. https://doi.org/10.1175/1520‐0469(2001)058<2021:TAUPOT>2.0.CO;2
[21] Golaz, J.‐C., Larson, V. E., & Cotton, W. R. (2002a). A PDF‐based model for boundary layer clouds. Part I: Method and model description. Journal of the Atmospheric Sciences, 59(24), 3540–3551. https://doi.org/10.1175/1520‐0469(2002)059<3540:APBMFB>2.0.CO;2
[22] Brient, F., Schneider, T., Tan, Z., Bony, S., Qu, X., & Hall, A. (2015). Shallowness of tropical low clouds as a predictor of climate models' response to warming. Climate Dynamics, 47, 433–449. https://doi.org/10.1007/s00382‐015‐2846‐0
[23] Bony, S. (2005). Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models. Geophysical Research Letters, 32, L20806. https://doi.org/10.1029/2005GL023851
[24] Moeng, C.‐H. (1986). Large‐eddy simulation of a stratus‐topped boundary layer. Part I: Structure and budgets. Journal of Atmospheric Sciences, 43(23), 2886–2900. https://doi.org/10.1175/1520‐0469(1986)043<2886:LESOAS>2.0.CO;2
[25] Kato, S., Sun‐Mack, S., Miller, W. F., Rose, F. G., Chen, Y., Minnis, P., & Wielicki, B. A. (2010). Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles. Journal of Geophysical Research, 115, D00H28. https://doi.org/10.1029/2009JD012277
[26] Golaz, J.‐C., Larson, V. E., & Cotton, W. R. (2002b). A PDF‐based model for boundary layer clouds. Part II: Model results. Journal of the Atmospheric Sciences, 59(24), 3552–3571. https://doi.org/10.1175/1520‐0469(2002)059<3552:APBMFB>2.0.CO;2
[27] Golaz, J.‐C., Wang, S., Doyle, J. D., & Schmidt, J. M. (2005). Coamps®‐Les: Model evaluation and analysis of second‐and third‐moment vertical velocity budgets. Boundary‐Layer Meteorol, 116(3), 487–517. https://doi.org/10.1007/s10546‐004‐7300‐5
[28] Moeng, C. H., Cotton, W. R., Stevens, B., Bretherton, C., Rand, H. A., Chlond, A., Khairoutdinov, M., Krueger, S., Lewellen, W. S., MacVean, M. K., Pasquier, J. R. M., Siebesma, A. P., & Sykes, R. I. (1996). Simulation of a stratocumulus‐topped planetary boundary layer: Intercomparison among different numerical codes. Bulletin of the American Meteorological Society, 77(2), 261–278. https://doi.org/10.1175/1520‐0477(1996)077<0261:SOASTP>2.0.CO;2
[29] Guo, Z., Wang, M., Qian, Y., Larson, V. E., Ghan, S., Ovchinnikov, M., Bogenschutz, P. A., Zhao, C., Lin, G., & Zhou, T. (2014). A sensitivity analysis of cloud properties to CLUBB parameters in the Single‐column Community Atmosphere Model (SCAM5). Journal of Advances in Modeling Earth Systems, 6, 829–858. https://doi.org/10.1002/2014MS000315
[30] Siebesma, A. P., Bretherton, C. S., Brown, A., Chlond, A., Cuxart, J., Duynkerke, P. G., Jiang, H., Khairoutdinov, M., Lewellen, D., Moeng, C. H., Sanchez, E., Stevens, B., & Stevens, D. E. (2003). A large eddy simulation intercomparison study of shallow cumulus convection. Journal of the Atmospheric Sciences, 60(10), 1201–1219. https://doi.org/10.1175/1520‐0469(2003)60<1201:ALESIS>2.0.CO;2
[31] Wood, R. (2012). Stratocumulus clouds. Monthly Weather Review, 140(8), 2373–2423. https://doi.org/10.1175/MWR‐D‐11‐00121.1
[32] Dee, D. P., & Uppala, S. (2009). Variational bias correction of satellite radiance data in the ERA‐Interim reanalysis. Quarterly Journal of the Royal Meteorological Society, 135(644), 1830–1841. https://doi.org/10.1002/qj.493
[33] Neale, R. B., Richter, J. H., & Jochum, M. (2008). The impact of convection on ENSO: From a delayed oscillator to a series of events. Journal of Climate, 21(22), 5904–5924.
[34] Nicholls, S. (1984). The dynamics of stratocumulus: Aircraft observations and comparisons with a mixed layer model. Quarterly Journal of the Royal Meteorological Society, 110(466), 783–820. https://doi.org/10.1002/qj.49711046603
[35] Bony, S., Colman, R., Kattsov, V. M., Allan, R. P., Bretherton, C. S., Dufresne, J. L., Hall, A., Hallegatte, S., Holland, M. M., Ingram, W., Randall, D. A., Soden, B. J., Tselioudis, G., & Webb, M. J. (2006). How well do we understand and evaluate climate change feedback processes? Journal of Climate, 19(15), 3445–3482. https://doi.org/10.1175/JCLI3819.1
[36] Cheng, A., & Xu, K.‐M. (2015). Improved low‐cloud simulation from the Community Atmosphere Model with an advanced third‐order turbulence closure. Journal of Climate, 28(14), 5737–5762. https://doi.org/10.1175/JCLI‐D‐14‐00776.1
[37] Bony, S., et al. (2015). Clouds, circulation and climate sensitivity. Nature Publishing Group, 8(4), 261–268.
[38] Wang, M., Larson, V. E., Ghan, S., Ovchinnikov, M., Schanen, D. P., Xiao, H., Liu, X., Rasch, P., & Guo, Z. (2015). A multiscale modeling framework model (superparameterized CAM5) with a higher‐order turbulence closure: Model description and low‐cloud simulations. Journal of Advances in Modeling Earth Systems, 7, 484–509. https://doi.org/10.1002/2014MS000375
[39] Nicholls, S. (1989). The structure of radiatively driven convection in stratocumulus. Quarterly Journal of the Royal Meteorological Society, 115(487), 487–511. https://doi.org/10.1002/qj.49711548704