首页 » 文章 » 文章详细信息
ChemistryOpen Volume 8 ,Issue 3 ,2019-03-28
Pressure‐Induced Formation of Quaternary Compound and In−N Distribution in InGaAsN Zincblende from Ab Initio Calculation
Full Papers
Prayoonsak Pluengphon 1 Pornsiri Wanarattikan 1 Thiti Bovornratanaraks 2 , 3 Burapat Inceesungvorn 4
Show affiliations
DOI:10.1002/open.201900018
Received 2019-01-14,
PDF
摘要

Abstract We present the effects of In−N distribution and high pressure on the zincblende phase (0–5 GPa) of InxGa1−xAs0.963N0.037 (x=0.074, 0.111 and 0.148). Structural, electronic, and optical properties are analyzed, and it is found that non‐isotropic distribution of In−N (type C) possesses the minimum free energy for the InGaAsN conventional cell system. An increasing indium content reduces the formation enthalpy of InGaAsN. The formation enthalpy, conduction band minimum, strength of covalent bonds, and electron density differences in free space of InGaAsN are decreased under high‐pressure conditions. The dielectric performance and static permittivity of InGaAsN are lower than that of GaAs, for which the dielectric performance transforms to conductor performance at high frequency. The optimum photoabsorption coefficient is found at the composition of In0.111Ga0.889As0.963N0.037 (3In−N), which very well relates to the literature.

关键词

photoabsorption;quaternary alloy;electronic structure;structural stability

授权许可

© 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

图表

The 1st and 2nd layers of Ga atoms around N atom in GaAs0.963N0.037.

Atomic positions of In−N in a) In3Ga24As26N, b) In2Ga25As26N, and c) In4Ga23As26N in ZB phases.

The DOSs of a) type C and GaAs at 0 GPa, b) 2In−N at 0 and 5 GPa, c) 3In−N at 0 GPa, d) 3In−N at 5 GPa, e) N atom in 3In−N at 0 GPa and f) PDOSs of N atom in 3In−N at 0 GPa.

Electron density differences of InGaAsN alloys in the range of −0.15 to 0.15 in unit of electrons per cubic bohr.

The calculated dielectric functions in real (R) and imaginary (Im) parts of a) GaAs at 0 and 5 GPa compared with previous experiment;5 b) 2In−N, 3In−N and 4In−N at 0 GPa.

Photoabsorption of InGaAsN alloys at 0 and 5 GPa compared with pure GaAs at 0 GPa.

Table 1

Table 2

Table 3

通讯作者

1. Prayoonsak Pluengphon.Division of Physical Science, Faculty of Science and Technology, Huachiew Chalermprakiet University, Samutprakarn, 10540, Thailand.prayoonsak@gmail.com
2. Burapat Inceesungvorn.Department of Chemistry, Center of Excellence for Innovation in Chemistry (PERCH-CIC), Center of Excellence in Materials Science and Technology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.prayoonsak@gmail.com

推荐引用方式

Prayoonsak Pluengphon,Pornsiri Wanarattikan,Thiti Bovornratanaraks,Burapat Inceesungvorn. Pressure‐Induced Formation of Quaternary Compound and In−N Distribution in InGaAsN Zincblende from Ab Initio Calculation. ChemistryOpen ,Vol.8, Issue 3(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] H. Huang, C. Yang, M. Wang, X. Ma, Sol. Energy Mater. Sol. Cells 2017, 170, 233–238.
[2] L. Geelhaar, M. Galluppi, G. Jaschke, R. Averbeck, H. Riechert, T. Remmele, Appl. Phys. Lett. 2006, 88, 011903.
[3] S. R. Kurtz, A. A. Allerman, C. H. Seager, R. M. Sieg, E. D. Jones, Appl. Phys. Lett. 2000, 77, 400–402.
[4] T. Tanaka, T. Terasawa, Y. Okano, S. Tsutsumi, K. Saito, Q. Guo, Sol. Energy Mater. Sol. Cells 2017, 169, 1–7.
[5] S. Sanorpim, F. Nakajima, W. Ono, R. Katayama, K. Onabe, Phys. Status Solidi A 2006, 203, 1612–1617.
[6] B. G. Pfommer, M. Cote, S. G. Louie, M. L. Cohen, J. Comput. Phys. 1997, 131, 233–240.
[7] P. Pluengphon, T. Bovornratanaraks, S. Vannarat, U. Pinsook, Solid State Commun. 2014, 195, 26–30.
[8] C. Liu, M. Ma, X. Yuan, H. Sun, P. Ying, Comput. Mater. Sci. 2017, 128, 337–342.
[9] A. Kosa, L. Stuchlikova, L. Harmatha, M. Mikolasek, J. Kovac Sol. Energy 2016, 132, 587–590.
[10] W. M. Haynes, CRC Handbook of Chemistry and Physics, 92nd ed. (CRC Press, 2012).
[11] D. E. Aspnes, A. A. Studna, Phys. Rev. B 1983, 27, 985–1009.
[12] K. Uesugi, S. Kuboya, S. Sanorpim, K. Onabe, Phys. Status Solidi C 2014, 11, 561–564.
[13] R. P. Feynman, Phys. Rev. 1939, 56, 340–343.
[14] M. C. Payne, M. P. Teter, D. C. Allan, T. A. Arias, J. D. Joannopoulos, Rev. Mod. Phys. 1992, 64, 1045–1097.
[15] A. Abdollahi, M. M. Golzan, K. Aghayar, Comput. Mater. Sci. 2016, 120, 70–76.
[16] M. D. Segall, P. L. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip, J. Phys. Condens. Matter 2002, 14, 2717–2744.
[17] D. J. Friedman, J. F. Geisz, S. R. Kurtz, J. M. Olson, J. Cryst. Growth 1998, 195, 409–416.
[18] S. H. Wei, A. Zunger, Phys. Rev. Lett. 1996, 76, 664–667.
[19] S. R. Kurtz, D. Myers, J. M. Olsen, IEEE Photovoltaic Spec. Conf., 26th (New York) 1997, p. 875.
[20] S. R. Kurtz, A. A. Allerman, E. D. Jones, J. M. Gee, J. J. Banas, B. E. Hammons, Appl. Phys. Lett. 1999, 74, 729–731.
[21] P. Pluengphon, T. Bovornratanaraks, S. Vannarat, U. Pinsook, Solid State Commun. 2015, 202, 19–23.
[22] H. A. Tahini, A. Chroneos, S. T. Murphy, U. Schwingenschlögl, R. W. Grimes, J. Appl. Phys. 2013, 114, 063517.
[23] Y. H. R. Chang, T. L. Yoon, T. L. Lim, M. H. Tuh, J. Alloys Compd. 2017, 704, 160–169.
[24] M. Schönleber, D. Klotz, E. Ivers-Tiffée, Electrochim. Acta 2014, 131, 20–27.
[25] P. Pluengphon, T. Bovornratanaraks, U. Pinsook, J. Alloys Compd. 2017, 700, 98–105.
[26] J. P. Perdew, A. Zunger, Phys. Rev. B 1981, 23, 5048–5079.
[27] R. F. Egerton, Electron Energy-loss Spectroscopy in the Electron Microscope, second ed. (Plenum Press, New York, 1996).
[28] Z. Y. Jiao, T. X. Wang, S. H. Ma, J. Alloys Compd. 2016, 687, 47–53.
[29] S. Li, H. Qiu, C. Wang, Y. Sun, X. Du, J. Zhao, Sol. Energy Mater. Sol. Cells 2016, 149, 97–102.
[30] F. Schättiger, D. Bauer, J. Demsar, T. Dekorsy, J. Kleinbauer, Appl. Phys. B 2012, 106, 605–612.
[31] N. Martínez, J. A. R. Martínez, J. Phys. Conf. Ser. 2016, 743, 012007.
[32] D. Vanderbilt, Phys. Rev. B 1990, 41, 7892–7895.
[33] J. Wang, B. Wu, G. Zhang, L. Tian, G. Gu, C. Gao, RSC Adv. 2016, 6, 10144–10149.
[34] M. Aslan, B. G. Yalcın, M. Ustundag, J. Alloys Compd. 2012, 519, 55–59.
[35] H. J. Monkhorst, J. D. Pack, Phys. Rev. B 1976, 13, 5188–5192.
[36] N. Bouarissa, Physica B 2011, 406, 2583–2587.
[37] P. Kongjaeng, S. Sanorpim, T. Yamamoto, W. Ono, F. Nakajima, R. Katayama, K. Onabe, J. Cryst. Growth 2007, 298, 111–115.
[38] M. Kondow, K. Uomi, A. Niwa, T. Kitatani, S. Watahaki, Y. Yazawa, Jpn. J. Appl. Phys. 1996, 35, 1273–1275.
[39] A. Al-Yacoub, L. Bellaiche, Phys. Rev. B 2000, 62, 10847–10851.