首页 » 文章 » 文章详细信息
ChemistryOpen Volume 8 ,Issue 3 ,2019-03-28
Excitation Energy‐Transfer Processes in the Sensitization Luminescence of Europium in a Highly Luminescent Complex
Full Papers
Yan‐Jie Huang 1 Can Ke 1 Li‐Min Fu 2 Yu Li 3 Shu‐Feng Wang 3 Ying‐Chao Ma 2 Jan‐Ping Zhang 2 Yuan Wang 1
Show affiliations
DOI:10.1002/open.201900012
Received 2019-03-19,
PDF
摘要

Abstract The excitation energy transfer (EET) pathways in the sensitization luminescence of EuIII and the excitation energy migration between the different ligands in [Eu(fod)3dpbt] [where fod=6,6,7,7,8,8,8‐heptafluoro‐2,2‐dimethyl‐3,5‐octanedione and dpbt=2‐(N,N‐diethylanilin‐4‐yl)‐4,6‐bis(3,5‐dimethylpyrazol‐1‐yl)‐1,3,5‐triazine], exhibiting well‐separated fluorescence excitation and phosphorescence bands of the different ligands, were investigated by using time‐resolved luminescence spectroscopy for the first time. The data clearly revealed that upon the excitation of dpbt, the sensitization luminescence of EuIII in [Eu(fod)3dpbt] was dominated by the singlet EET pathway, whereas the triplet EET pathway involving T1(dpbt) was inefficient. The energy migration from T1(dpbt) to T1(fod) in [Eu(fod)3dpbt] was not observed. Moreover, upon the excitation of fod, a singlet EET pathway for the sensitization of EuIII luminescence, including the energy migration from S1(fod) to S1(dpbt) was revealed, in addition to the triplet EET pathway involving T1(fod). Under the excitation of dpbt at 410 nm, [Eu(fod)3dpbt] exhibited an absolute quantum yield for EuIII luminescence of 0.59 at 298 K. This work provides a solid and elegant example for the concept that singlet EET pathway could dominate the sensitization luminescence of EuIII in some complexes.

关键词

time-resolved spectroscopy;singlet pathway;sensitization luminescence;energy transfer;Europium

授权许可

© 2019 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim

图表

Chemical structure of [Eu(fod)3dpbt].

The energy‐transfer pathway in the dpbt‐sensitized luminescence of EuIII in [Eu(fod)3dpbt].

The normalized UV/Vis absorption spectrum (black solid line), EuIII luminescence excitation spectrum (blue dashed line, λem=614 nm) and emission spectrum (red solid line, λex=405 nm) of [Eu(fod)3dpbt] in toluene (1×10−5 m) at 298 K.

The time‐resolved luminescence spectra and kinetics curves on different timescales of [Eu(fod)3dpbt] in toluene recorded at 298 K (1×10−4 m). a) Kinetics curves at 430 and 585 nm (λex = 400 nm), and the inset shows the luminescence spectra at different delay times. b) Kinetics curves at 585 and 614 nm (λex=416 nm).

Phosphorescence spectra of [Eu(fod)3dpbt] in toluene (5×10−4 m) at 77 K with different delay times. a) λex=295 nm, the inset shows phosphorescence intensity decay curve at 500 nm; b) λex=416 nm.

Luminescence spectrum of [Eu(fod)3dpbt] in toluene (1×10−5 m) at 298 K under the excitation at 295 nm.

通讯作者

1. Jan‐Ping Zhang.Department of Chemistry, Renmin University of China, Beijing, 100872, China.jpzhang@ruc.edu.cn
2. Yuan Wang.Beijing National Laboratory for Molecular Science State Key Laboratory for Structural Chemistry of Unstable and Stable Species College of Chemistry and Molecular Engineering and Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.jpzhang@ruc.edu.cn

推荐引用方式

Yan‐Jie Huang,Can Ke,Li‐Min Fu,Yu Li,Shu‐Feng Wang,Ying‐Chao Ma,Jan‐Ping Zhang,Yuan Wang. Excitation Energy‐Transfer Processes in the Sensitization Luminescence of Europium in a Highly Luminescent Complex. ChemistryOpen ,Vol.8, Issue 3(2019)

您觉得这篇文章对您有帮助吗?
分享和收藏
0

是否收藏?

参考文献
[1] B. M. van der Ende, L. Aarts, A. Meijerink, Phys. Chem. Chem. Phys. 2009, 11, 11081–11095.
[2] N. Sabbatini, M. Guardigli, J. M. Lehn, Coord. Chem. Rev. 1993, 123, 201–228.
[3] W. Yang, M. L. Fu, X. Wen, Y. Liu, Y. Tian, Y. C. Liu, R. C. Han, Z. Y. Gao, T. E. Wang, Y. L. Sha, Y. Q. Jiang, Y. Wang, J. P. Zhang, Biomaterials 2016, 100, 152–161.
[4] A. D'Aléo, F. Pointillart, L. Ouahab, C. Andraud, O. Maury, Coord. Chem. Rev. 2012, 256, 1604–1620.
[5] Z. C. Zhu, B. Song, J. L. Yuan, C. L. Yang, Adv. Sci. 2016, 3, 1600146.
[6] Y. Kanda, H. Sponer, J. Chem. Phys. 1958, 28, 798–806.
[7] A. D'Aléo, A. Picot, A. Beeby, J. A. G. Williams, B. Le Guennic, C. Andraud, O. Maury, Inorg. Chem. 2008, 47, 10258–10268.
[8] L. M. Fu, X. F. Wen, X. C. Ai, Y. Sun, Y. S. Wu, J. P. Zhang, Y. Wang, Angew. Chem. Int. Ed. 2005, 44, 747–750;
[9] L. M. Fu, X. C. Ai, M. Y. Li, X. F. Wen, R. Hao, Y. S. Wu, Y. Wang, J. P. Zhang, J. Phys. Chem. A. 2010, 114, 4494–4500.
[10] I. F. Huang, D. F. Williams, R. Yip, J. Lumin. 1977, 15, 231–234.
[11] H. Sund, Y. Y. Liao, C. Andraud, A. Duperray, A. Grichine, B. Le Guennic, F. Riobé, H. Takalo, O. Maury, ChemPhysChem 2018, 19, 3318–3324.
[12] M. C. L. Yeung, B. W. K. Chu, V. W. W. Yam, ChemistryOpen 2014, 3, 172–176.
[13] M. Räsänen, H. Takalo, J. Rosenberg, J. Mäkelä, K. Haapakka, J. Kankare, J. Lumin. 2014, 146, 211–217.
[14] J.-C. G. Bünzli, Coord. Chem. Rev. 2015, 293, 19–47.
[15] D. J. Lewis, P. B. Glover, M. C. Solomons, Z. Pikramenou, J. Am. Chem. Soc. 2011, 133, 1033–1043.
[16] H. B. Wei, Z. F. Zhao, C. Wei, G. Yu, Z. W. Liu, B. Zhang, J. Bian, Z. Q. Bian, C. H. Huang, Adv. Funct. Mater. 2016, 26, 2085–2096.
[17] Y. Ma, Y. Wang, Coord. Chem. Rev. 2010, 254, 972–990.
[18] H. S. Peng, M. I. J. Stich, J. B. Yu, L. N. Sun, L. H. Fisher, O. S. Wolfbeis, Adv. Mater. 2010, 22, 716–719.
[19] Q. Q. Zhang, L. L. Wu, X. Y. Cao, X. B. Chen, W. H. Fang, M. Dolg, Angew. Chem. Int. Ed. 2017, 56, 7986–7990;
[20] G. A. Crosby, Mol. Cryst. 1966, 1, 37–81.
[21] W. D. Horrocks, Jr., W. E. Collier, J. Am. Chem. Soc. 1981, 103, 2856–2862.
[22] Q. Lei, Y. R. Zhang, J. H. Luo, R. C. Han, X. F. Geng, X. D. Lv, Y. Liu, Y. Wang, Acta Phys. -Chim. Sin. 2019, 35, 415–421.
[23] R. Hao, M. Y. Li, Y. Wang, J. P. Zhang, Y. Ma, L. M. Fu, X. F. Wen, Y. S. Wu, X. C. Ai, S. W. Zhang, Y. G. Wei, Adv. Funct. Mater. 2007, 17, 3663–3669.
[24] S. M. Borisov, O. S. Wolfbeis, Anal. Chem. 2006, 78, 5094–5101.
[25] C. L. Liu, R. L. Zhang, C. S. Lin, L. P. Zhou, L. X. Cai, J. T. Kong, S. Q. Yang, K. L. Han, Q. F. Sun, J. Am. Chem. Soc. 2017, 139, 12474–12479.
[26] F. M. Xue, Y. Ma, L. M. Fu, R. Hao, G. S. Shao, M. X. Tang, J. P. Zhang, Y. Wang, Phys. Chem. Chem. Phys. 2010, 12, 3195–3202.
[27] D. Kovacs, X. Lu, L. S. Mészáros, M. Ott, J. Andres, K. E. Borbas, J. Am. Chem. Soc. 2017, 139, 5756–5767.
[28] J. Bruno, W. D. Horrocks, Jr., R. J. Zauhar, Biochemistry 1992, 31, 7016–7026.
[29] C. Yang, L. M. Fu, Y. Wang, J. P. Zhang, W. T. Wong, X. C. Ai, Y. F. Qiao, B. S. Zou, L. L. Gui, Angew. Chem. Int. Ed. 2004, 43, 5010–5013;
[30] J.-F. Lemonnier, L. Babel, L. Guénée, P. Mukherjee, D. H. Waldeck, S. V. Eliseeva, S. Petoud, C. Piguet, Angew. Chem. Int. Ed. 2012, 51, 11302–11305;